Comptes Rendus
Partial differential equations/Mathematical physics
Trapped modes supported by localized potentials in the zigzag graphene ribbon
Comptes Rendus. Mathématique, Volume 354 (2016) no. 1, pp. 63-67.

Localized potentials in the Dirac equation for the electron dynamics in a zigzag graphene ribbon are constructed to support trapped modes while the corresponding eigenvalues are embedded into the continuous spectrum.

On construit des potentiels localisés pour les équations de Dirac décrivant le comportement des électrons dans une bande de graphène en zigzag, pour lesquels des modes piégés existent, tels que les valeurs propres correspondantes sont plongées dans le spectre continu.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2015.10.007

Vladimir A. Kozlov 1; Sergei A. Nazarov 2, 3, 4; Anna Orlof 1

1 Department of Mathematics, Linköping University, SE-58183 Linköping, Sweden
2 Saint-Petersburg State University, Universitetskaya nab., 7-9, 199034, St. Petersburg, Russia
3 Saint-Petersburg State Polytechnical University, Polytechnicheskaya ul., 29, 195251, St. Petersburg, Russia
4 Institute of Problems of Mechanical Engineering RAS, V.O., Bol'shoi pr., 61, 199178, St. Petersburg, Russia
@article{CRMATH_2016__354_1_63_0,
     author = {Vladimir A. Kozlov and Sergei A. Nazarov and Anna Orlof},
     title = {Trapped modes supported by localized potentials in the zigzag graphene ribbon},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {63--67},
     publisher = {Elsevier},
     volume = {354},
     number = {1},
     year = {2016},
     doi = {10.1016/j.crma.2015.10.007},
     language = {en},
}
TY  - JOUR
AU  - Vladimir A. Kozlov
AU  - Sergei A. Nazarov
AU  - Anna Orlof
TI  - Trapped modes supported by localized potentials in the zigzag graphene ribbon
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 63
EP  - 67
VL  - 354
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2015.10.007
LA  - en
ID  - CRMATH_2016__354_1_63_0
ER  - 
%0 Journal Article
%A Vladimir A. Kozlov
%A Sergei A. Nazarov
%A Anna Orlof
%T Trapped modes supported by localized potentials in the zigzag graphene ribbon
%J Comptes Rendus. Mathématique
%D 2016
%P 63-67
%V 354
%N 1
%I Elsevier
%R 10.1016/j.crma.2015.10.007
%G en
%F CRMATH_2016__354_1_63_0
Vladimir A. Kozlov; Sergei A. Nazarov; Anna Orlof. Trapped modes supported by localized potentials in the zigzag graphene ribbon. Comptes Rendus. Mathématique, Volume 354 (2016) no. 1, pp. 63-67. doi : 10.1016/j.crma.2015.10.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.10.007/

[1] A. Aslanian; L. Parnovskii; D. Vassiliev Q. J. Mech. Appl. Math., 53 (2000) no. 3, pp. 429-447

[2] L. Brey; H.A. Fertig Phys. Rev. B, 73 (2006)

[3] G. Cardone; S.A. Nazarov; K. Ruotsalainen Sb. Math., 203 (2012) no. 2, pp. 153-182

[4] D.V. Evans; M. Levitin; D. Vasil'ev J. Fluid Mech., 261 (1994), pp. 21-31

[5] I.V. Kamotskii; S.A. Nazarov J. Math. Sci., 111 (2002) no. 4, pp. 3657-3666

[6] S.A. Nazarov Theor. Math. Phys., 167 (2011) no. 2, pp. 606-627

[7] S.A. Nazarov Comput. Math. Math. Phys., 52 (2012) no. 3, pp. 598-632

[8] S.A. Nazarov Funct. Anal. Appl., 475 (2013) no. 3, pp. 195-209

[9] M.M. Vainberg; V.A. Trenogin Theory of Branching of Solutions of Non-linear Equations, Noordhoff International Publishing, Leyden, 1974

[10] M.D. VanDyke Perturbation Methods in Fluid Mechanics, Applied Mathematics and Mechanics, vol. 8, Academic Press, New York–London, 1964

Cited by Sources:

Comments - Politique