[Modes piégés supportés par des potentiels localisés dans des bandes de graphène en zigzag]
On construit des potentiels localisés pour les équations de Dirac décrivant le comportement des électrons dans une bande de graphène en zigzag, pour lesquels des modes piégés existent, tels que les valeurs propres correspondantes sont plongées dans le spectre continu.
Localized potentials in the Dirac equation for the electron dynamics in a zigzag graphene ribbon are constructed to support trapped modes while the corresponding eigenvalues are embedded into the continuous spectrum.
Accepté le :
Publié le :
Vladimir A. Kozlov 1 ; Sergei A. Nazarov 2, 3, 4 ; Anna Orlof 1
@article{CRMATH_2016__354_1_63_0, author = {Vladimir A. Kozlov and Sergei A. Nazarov and Anna Orlof}, title = {Trapped modes supported by localized potentials in the zigzag graphene ribbon}, journal = {Comptes Rendus. Math\'ematique}, pages = {63--67}, publisher = {Elsevier}, volume = {354}, number = {1}, year = {2016}, doi = {10.1016/j.crma.2015.10.007}, language = {en}, }
TY - JOUR AU - Vladimir A. Kozlov AU - Sergei A. Nazarov AU - Anna Orlof TI - Trapped modes supported by localized potentials in the zigzag graphene ribbon JO - Comptes Rendus. Mathématique PY - 2016 SP - 63 EP - 67 VL - 354 IS - 1 PB - Elsevier DO - 10.1016/j.crma.2015.10.007 LA - en ID - CRMATH_2016__354_1_63_0 ER -
Vladimir A. Kozlov; Sergei A. Nazarov; Anna Orlof. Trapped modes supported by localized potentials in the zigzag graphene ribbon. Comptes Rendus. Mathématique, Volume 354 (2016) no. 1, pp. 63-67. doi : 10.1016/j.crma.2015.10.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.10.007/
[1] Q. J. Mech. Appl. Math., 53 (2000) no. 3, pp. 429-447
[2] Phys. Rev. B, 73 (2006)
[3] Sb. Math., 203 (2012) no. 2, pp. 153-182
[4] J. Fluid Mech., 261 (1994), pp. 21-31
[5] J. Math. Sci., 111 (2002) no. 4, pp. 3657-3666
[6] Theor. Math. Phys., 167 (2011) no. 2, pp. 606-627
[7] Comput. Math. Math. Phys., 52 (2012) no. 3, pp. 598-632
[8] Funct. Anal. Appl., 475 (2013) no. 3, pp. 195-209
[9] Theory of Branching of Solutions of Non-linear Equations, Noordhoff International Publishing, Leyden, 1974
[10] Perturbation Methods in Fluid Mechanics, Applied Mathematics and Mechanics, vol. 8, Academic Press, New York–London, 1964
- Trapping of a wave in a curved cylindrical acoustic waveguide with constant cross-section, St. Petersburg Mathematical Journal, Volume 31 (2020) no. 5, pp. 865-885 | DOI:10.1090/spmj/1626 | Zbl:1450.35200
- Model of a saccular aneurysm of the bifurcation node of an artery, Journal of Mathematical Sciences (New York), Volume 238 (2019) no. 5, pp. 676-688 | DOI:10.1007/s10958-019-04266-1 | Zbl:1421.35387
- Various manifestations of wood anomalies in locally distorted quantum waveguides, Computational Mathematics and Mathematical Physics, Volume 58 (2018) no. 11, pp. 1838-1855 | DOI:10.1134/s096554251811009x | Zbl:1421.78020
Cité par 3 documents. Sources : zbMATH
Commentaires - Politique