Localized potentials in the Dirac equation for the electron dynamics in a zigzag graphene ribbon are constructed to support trapped modes while the corresponding eigenvalues are embedded into the continuous spectrum.
On construit des potentiels localisés pour les équations de Dirac décrivant le comportement des électrons dans une bande de graphène en zigzag, pour lesquels des modes piégés existent, tels que les valeurs propres correspondantes sont plongées dans le spectre continu.
Accepted:
Published online:
Vladimir A. Kozlov 1; Sergei A. Nazarov 2, 3, 4; Anna Orlof 1
@article{CRMATH_2016__354_1_63_0, author = {Vladimir A. Kozlov and Sergei A. Nazarov and Anna Orlof}, title = {Trapped modes supported by localized potentials in the zigzag graphene ribbon}, journal = {Comptes Rendus. Math\'ematique}, pages = {63--67}, publisher = {Elsevier}, volume = {354}, number = {1}, year = {2016}, doi = {10.1016/j.crma.2015.10.007}, language = {en}, }
TY - JOUR AU - Vladimir A. Kozlov AU - Sergei A. Nazarov AU - Anna Orlof TI - Trapped modes supported by localized potentials in the zigzag graphene ribbon JO - Comptes Rendus. Mathématique PY - 2016 SP - 63 EP - 67 VL - 354 IS - 1 PB - Elsevier DO - 10.1016/j.crma.2015.10.007 LA - en ID - CRMATH_2016__354_1_63_0 ER -
Vladimir A. Kozlov; Sergei A. Nazarov; Anna Orlof. Trapped modes supported by localized potentials in the zigzag graphene ribbon. Comptes Rendus. Mathématique, Volume 354 (2016) no. 1, pp. 63-67. doi : 10.1016/j.crma.2015.10.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.10.007/
[1] Q. J. Mech. Appl. Math., 53 (2000) no. 3, pp. 429-447
[2] Phys. Rev. B, 73 (2006)
[3] Sb. Math., 203 (2012) no. 2, pp. 153-182
[4] J. Fluid Mech., 261 (1994), pp. 21-31
[5] J. Math. Sci., 111 (2002) no. 4, pp. 3657-3666
[6] Theor. Math. Phys., 167 (2011) no. 2, pp. 606-627
[7] Comput. Math. Math. Phys., 52 (2012) no. 3, pp. 598-632
[8] Funct. Anal. Appl., 475 (2013) no. 3, pp. 195-209
[9] Theory of Branching of Solutions of Non-linear Equations, Noordhoff International Publishing, Leyden, 1974
[10] Perturbation Methods in Fluid Mechanics, Applied Mathematics and Mechanics, vol. 8, Academic Press, New York–London, 1964
Cited by Sources:
Comments - Politique