In this paper, we study the invariance of the support of solutions for a sixth-order nonlinear parabolic equation, which arises in the industrial application of the isolation oxidation of silicium. Based on the suitable integral inequalities, we establish the invariance of the support of solutions.
Dans cet article, on étudie l'invariance des solutions d'une équation parabolique du sixième ordre issue d'une application industrielle, l'isolement de l'oxydation du silicium. À partir d'inégalités intégrales, on établit l'invariance du support des solutions.
Accepted:
Published online:
Changchun Liu 1; Xiaoli Zhang 1
@article{CRMATH_2016__354_1_69_0, author = {Changchun Liu and Xiaoli Zhang}, title = {Invariance of the support of solutions for a sixth-order thin film equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {69--73}, publisher = {Elsevier}, volume = {354}, number = {1}, year = {2016}, doi = {10.1016/j.crma.2015.10.002}, language = {en}, }
Changchun Liu; Xiaoli Zhang. Invariance of the support of solutions for a sixth-order thin film equation. Comptes Rendus. Mathématique, Volume 354 (2016) no. 1, pp. 69-73. doi : 10.1016/j.crma.2015.10.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.10.002/
[1] Nonnegative solutions of a fourth order nonlinear degenerate parabolic equation, Arch. Ration. Mech. Anal., Volume 129 (1995) no. 2, pp. 175-200
[2] Finite speed of propagation and continuity of the interface for thin viscous flows, Adv. Differ. Equ., Volume 1 (1996), pp. 337-368
[3] Higher order nonlinear degenerate parabolic equations, J. Differ. Equ., Volume 83 (1990), pp. 179-206
[4] Unstable sixth-order thin film equation: I. Blow-up similarity solutions, Nonlinearity, Volume 20 (2007), pp. 1799-1841
[5] Unstable sixth-order thin film equation: II. Global similarity patterns, Nonlinearity, Volume 20 (2007), pp. 1843-1881
[6] Finite-length mask effects in the isolation oxidation of silicon, IMA J. Appl. Math., Volume 58 (1997), pp. 121-146
[7] Moving-boundary and fixed-domain problems for a sixth-order thin-film equation, Eur. J. Appl. Math., Volume 15 (2004), pp. 713-754
[8] The thin film equation with : finite speed of propagation in terms of the -norm, Adv. Differ. Equ., Volume 3 (1998) no. 5, pp. 625-642
[9] Mathematical aspects of semiconductor process modelling, University of Oxford, Oxford, UK, 1986 (PhD thesis)
[10] On the convective Cahn–Hilliard equation with degenerate mobility, J. Math. Anal. Appl., Volume 344 (2008) no. 1, pp. 124-144
[11] Qualitative properties for a sixth-order thin film equation, Math. Model. Anal., Volume 15 (2010), pp. 457-471
[12] A sixth-order thin film equation in two space dimensions, Adv. Differ. Equ., Volume 20 (2015) no. 5/6, pp. 557-580
[13] Finite speed of propagation for thin viscous flows over an inclined plane, Nonlinear Anal., Real World Appl., Volume 13 (2012) no. 1, pp. 464-475
[14] Solutions with compact support to the Cauchy problem of an equation modeling the motion of viscous droplets, Z. Angew. Math. Phys., Volume 47 (1996), pp. 659-671
Cited by Sources:
☆ This work is supported by the National Natural Science Foundation of China (No. 11471164).
Comments - Policy