Comptes Rendus
Partial differential equations
Invariance of the support of solutions for a sixth-order thin film equation
Comptes Rendus. Mathématique, Volume 354 (2016) no. 1, pp. 69-73.

In this paper, we study the invariance of the support of solutions for a sixth-order nonlinear parabolic equation, which arises in the industrial application of the isolation oxidation of silicium. Based on the suitable integral inequalities, we establish the invariance of the support of solutions.

Dans cet article, on étudie l'invariance des solutions d'une équation parabolique du sixième ordre issue d'une application industrielle, l'isolement de l'oxydation du silicium. À partir d'inégalités intégrales, on établit l'invariance du support des solutions.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2015.10.002
Keywords: Sixth order nonlinear parabolic equation, Degenerate, Invariance of support

Changchun Liu 1; Xiaoli Zhang 1

1 Department of Mathematics, Jilin University, Changchun 130012, China
@article{CRMATH_2016__354_1_69_0,
     author = {Changchun Liu and Xiaoli Zhang},
     title = {Invariance of the support of solutions for a sixth-order thin film equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {69--73},
     publisher = {Elsevier},
     volume = {354},
     number = {1},
     year = {2016},
     doi = {10.1016/j.crma.2015.10.002},
     language = {en},
}
TY  - JOUR
AU  - Changchun Liu
AU  - Xiaoli Zhang
TI  - Invariance of the support of solutions for a sixth-order thin film equation
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 69
EP  - 73
VL  - 354
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2015.10.002
LA  - en
ID  - CRMATH_2016__354_1_69_0
ER  - 
%0 Journal Article
%A Changchun Liu
%A Xiaoli Zhang
%T Invariance of the support of solutions for a sixth-order thin film equation
%J Comptes Rendus. Mathématique
%D 2016
%P 69-73
%V 354
%N 1
%I Elsevier
%R 10.1016/j.crma.2015.10.002
%G en
%F CRMATH_2016__354_1_69_0
Changchun Liu; Xiaoli Zhang. Invariance of the support of solutions for a sixth-order thin film equation. Comptes Rendus. Mathématique, Volume 354 (2016) no. 1, pp. 69-73. doi : 10.1016/j.crma.2015.10.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.10.002/

[1] E. Beretta; M. Bertsch; R. Dal Passo Nonnegative solutions of a fourth order nonlinear degenerate parabolic equation, Arch. Ration. Mech. Anal., Volume 129 (1995) no. 2, pp. 175-200

[2] F. Bernis Finite speed of propagation and continuity of the interface for thin viscous flows, Adv. Differ. Equ., Volume 1 (1996), pp. 337-368

[3] F. Bernis; A. Friedman Higher order nonlinear degenerate parabolic equations, J. Differ. Equ., Volume 83 (1990), pp. 179-206

[4] J.D. Evans; V.A. Galaktionov; J.R. King Unstable sixth-order thin film equation: I. Blow-up similarity solutions, Nonlinearity, Volume 20 (2007), pp. 1799-1841

[5] J.D. Evans; V.A. Galaktionov; J.R. King Unstable sixth-order thin film equation: II. Global similarity patterns, Nonlinearity, Volume 20 (2007), pp. 1843-1881

[6] J.D. Evans; A.B. Tayler; J.R. King Finite-length mask effects in the isolation oxidation of silicon, IMA J. Appl. Math., Volume 58 (1997), pp. 121-146

[7] J.C. Flitton; J.R. King Moving-boundary and fixed-domain problems for a sixth-order thin-film equation, Eur. J. Appl. Math., Volume 15 (2004), pp. 713-754

[8] J. Hulshof; A.E. Shishkov The thin film equation with 2n<3: finite speed of propagation in terms of the L1-norm, Adv. Differ. Equ., Volume 3 (1998) no. 5, pp. 625-642

[9] J.R. King Mathematical aspects of semiconductor process modelling, University of Oxford, Oxford, UK, 1986 (PhD thesis)

[10] C. Liu On the convective Cahn–Hilliard equation with degenerate mobility, J. Math. Anal. Appl., Volume 344 (2008) no. 1, pp. 124-144

[11] C. Liu Qualitative properties for a sixth-order thin film equation, Math. Model. Anal., Volume 15 (2010), pp. 457-471

[12] C. Liu A sixth-order thin film equation in two space dimensions, Adv. Differ. Equ., Volume 20 (2015) no. 5/6, pp. 557-580

[13] X. Liu; C. Qu Finite speed of propagation for thin viscous flows over an inclined plane, Nonlinear Anal., Real World Appl., Volume 13 (2012) no. 1, pp. 464-475

[14] J. Yin; W. Gao Solutions with compact support to the Cauchy problem of an equation modeling the motion of viscous droplets, Z. Angew. Math. Phys., Volume 47 (1996), pp. 659-671

Cited by Sources:

This work is supported by the National Natural Science Foundation of China (No. 11471164).

Comments - Policy