On construit des feuilletages de Lie nilpotents sur une variété compacte qui n'admettent pas de déformation résoluble non nilpotente.
We construct on a compact manifold a nilpotent (non-Abelian) Lie foliation of any codimension that cannot be deformed into a non-nilpotent solvable one.
Accepté le :
Publié le :
Hamidou Dathe 1
@article{CRMATH_2016__354_1_97_0, author = {Hamidou Dathe}, title = {Sur les d\'eformations des feuilletages de {Lie} nilpotents}, journal = {Comptes Rendus. Math\'ematique}, pages = {97--100}, publisher = {Elsevier}, volume = {354}, number = {1}, year = {2016}, doi = {10.1016/j.crma.2015.10.009}, language = {fr}, }
Hamidou Dathe. Sur les déformations des feuilletages de Lie nilpotents. Comptes Rendus. Mathématique, Volume 354 (2016) no. 1, pp. 97-100. doi : 10.1016/j.crma.2015.10.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.10.009/
[1] Arithmetic subgroups of algebraic groups, Ann. Math. (2) (1962), p. 75
[2] Sur le feuilletage de Lehmann, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 5–6, pp. 337-340
[3] Quelques exemples de feuilletage de Lie, Ann. Fac. Sci. Toulouse, Volume 14 (2006) no. 2, pp. 203-215
[4] Riemannian Foliation: Example and Problems, Progress in Mathematics, vol. 73, Birkhäuser, Boston, 1998 (Appendice e de Riemannian foliations, par P. Molino)
[5] On deformations of transversaly homogenous foliations, Topology, Volume 40 (2001), pp. 1363-1393
[6] Sur l'approximation de certains feuilletages nilpotents par des fibrations, C. R. Acad. Sci. Paris, Ser. A, Volume 286 (1978), pp. 4-35
[7] Riemannian Foliation, Progress in Mathematics, vol. 73, Birkhäuser, Boston, 1988
[8] On fibering certain manifold over the circle, Topology, Volume 9 (1970), pp. 153-154
Cité par Sources :
Commentaires - Politique