Let be a compact boundaryless Finsler manifold. In this work, a sufficient condition for a vector field on to be harmonic is obtained. Next the harmonic vector fields on Finsler manifolds are characterized and an upper bound for the first horizontal de Rham cohomology group of the sphere bundle SM is obtained.
Soit une variété finslérienne compacte sans bord. Dans cet article, nous donnons une condition suffisante pour qu'un champ de vecteurs sur soit harmonique. Par ailleurs, nous obtenons une caractérisation des champs de vecteurs harmoniques sur les variétés finslériennes, ainsi qu'une borne supérieure pour le premier groupe horizontal de cohomologie de de Rham du fibré en sphères SM.
Accepted:
Published online:
Alireza Shahi 1; Behroz Bidabad 1
@article{CRMATH_2016__354_1_101_0, author = {Alireza Shahi and Behroz Bidabad}, title = {Harmonic vector fields on {Finsler} manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {101--106}, publisher = {Elsevier}, volume = {354}, number = {1}, year = {2016}, doi = {10.1016/j.crma.2015.10.006}, language = {en}, }
Alireza Shahi; Behroz Bidabad. Harmonic vector fields on Finsler manifolds. Comptes Rendus. Mathématique, Volume 354 (2016) no. 1, pp. 101-106. doi : 10.1016/j.crma.2015.10.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.10.006/
[1] Sur les isomètries infinitesimales d'une variété finslérienne compacte, C. R. Acad. Sci. Paris, Ser. A, Volume 278 (1974), p. 871
[2] Inititiation to Global Finslerian Geometry, vol. 68, Math. Library, North-Holland, 2006
[3] An Introduction to Riemann–Finsler Geometry, Grad. Texts Math., vol. 200, Springer-Verlag, 2000
[4] A Hodge decomposition theorem for Finsler spaces, C. R. Acad. Sci. Paris, Sér. I, Volume 323 (1996), pp. 51-56
[5] Vector fields and Ricci curvature, Bull. Amer. Math. Soc., Volume 52 (1946), pp. 776-797
[6] Harmonic Vector Fields, Variational Principles and Differential Geometry, Elsevier, 2011
[7] Harmonic vector fields on Landsberg manifolds, C. R. Acad. Sci. Paris, Ser. I, Volume 352 (2014), pp. 737-741
[8] A remark on the Bochner technique in differential geometry, Proc. Amer. Math. Soc., Volume 78 (1980), pp. 403-408
[9] On harmonic and Killing vector fields, Ann. Math., Volume 55 (1952) no. 1, pp. 38-45
Cited by Sources:
Comments - Policy