Comptes Rendus
Differential geometry
Harmonic vector fields on Finsler manifolds
Comptes Rendus. Mathématique, Volume 354 (2016) no. 1, pp. 101-106.

Let (M,F) be a compact boundaryless Finsler manifold. In this work, a sufficient condition for a vector field on (M,F) to be harmonic is obtained. Next the harmonic vector fields on Finsler manifolds are characterized and an upper bound for the first horizontal de Rham cohomology group of the sphere bundle SM is obtained.

Soit (M,F) une variété finslérienne compacte sans bord. Dans cet article, nous donnons une condition suffisante pour qu'un champ de vecteurs sur (M,F) soit harmonique. Par ailleurs, nous obtenons une caractérisation des champs de vecteurs harmoniques sur les variétés finslériennes, ainsi qu'une borne supérieure pour le premier groupe horizontal de cohomologie de de Rham du fibré en sphères SM.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2015.10.006
Keywords: Finsler manifolds, Harmonic vector fields, Landsberg

Alireza Shahi 1; Behroz Bidabad 1

1 Faculty of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Iran
@article{CRMATH_2016__354_1_101_0,
     author = {Alireza Shahi and Behroz Bidabad},
     title = {Harmonic vector fields on {Finsler} manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {101--106},
     publisher = {Elsevier},
     volume = {354},
     number = {1},
     year = {2016},
     doi = {10.1016/j.crma.2015.10.006},
     language = {en},
}
TY  - JOUR
AU  - Alireza Shahi
AU  - Behroz Bidabad
TI  - Harmonic vector fields on Finsler manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 101
EP  - 106
VL  - 354
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2015.10.006
LA  - en
ID  - CRMATH_2016__354_1_101_0
ER  - 
%0 Journal Article
%A Alireza Shahi
%A Behroz Bidabad
%T Harmonic vector fields on Finsler manifolds
%J Comptes Rendus. Mathématique
%D 2016
%P 101-106
%V 354
%N 1
%I Elsevier
%R 10.1016/j.crma.2015.10.006
%G en
%F CRMATH_2016__354_1_101_0
Alireza Shahi; Behroz Bidabad. Harmonic vector fields on Finsler manifolds. Comptes Rendus. Mathématique, Volume 354 (2016) no. 1, pp. 101-106. doi : 10.1016/j.crma.2015.10.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.10.006/

[1] H. Akbar-Zadeh Sur les isomètries infinitesimales d'une variété finslérienne compacte, C. R. Acad. Sci. Paris, Ser. A, Volume 278 (1974), p. 871

[2] H. Akbar-Zadeh Inititiation to Global Finslerian Geometry, vol. 68, Math. Library, North-Holland, 2006

[3] D. Bao; S. Chern; Z. Shen An Introduction to Riemann–Finsler Geometry, Grad. Texts Math., vol. 200, Springer-Verlag, 2000

[4] D. Bao; B. Lackey A Hodge decomposition theorem for Finsler spaces, C. R. Acad. Sci. Paris, Sér. I, Volume 323 (1996), pp. 51-56

[5] S. Bochner Vector fields and Ricci curvature, Bull. Amer. Math. Soc., Volume 52 (1946), pp. 776-797

[6] S. Dragomir; D. Perrone Harmonic Vector Fields, Variational Principles and Differential Geometry, Elsevier, 2011

[7] A. Shahi; B. Bidabad Harmonic vector fields on Landsberg manifolds, C. R. Acad. Sci. Paris, Ser. I, Volume 352 (2014), pp. 737-741

[8] H. Wu A remark on the Bochner technique in differential geometry, Proc. Amer. Math. Soc., Volume 78 (1980), pp. 403-408

[9] K. Yano On harmonic and Killing vector fields, Ann. Math., Volume 55 (1952) no. 1, pp. 38-45

Cited by Sources:

Comments - Policy