[KK-théorie des systèmes semi-circulaires A-valués]
On calcule dans cet article la KK-théorie de systèmes semi-circulaires A-valués à l'aide d'outils développés par Pimsner (voir [1]) pour étudier les algèbres de Toeplitz généralisées.
We compute in this article the KK-theory of A-valued semi-circular systems thanks to tools developed by Pimsner (see [1]) to study generalized Toeplitz algebras.
Accepté le :
Publié le :
Emmanuel Germain 1 ; Pierre Umber 2
@article{CRMATH_2016__354_1_87_0, author = {Emmanuel Germain and Pierre Umber}, title = {KK-theory of {A-valued} semi-circular systems}, journal = {Comptes Rendus. Math\'ematique}, pages = {87--90}, publisher = {Elsevier}, volume = {354}, number = {1}, year = {2016}, doi = {10.1016/j.crma.2015.10.013}, language = {en}, }
Emmanuel Germain; Pierre Umber. KK-theory of A-valued semi-circular systems. Comptes Rendus. Mathématique, Volume 354 (2016) no. 1, pp. 87-90. doi : 10.1016/j.crma.2015.10.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.10.013/
[1] A class of -algebras generalizing both Cuntz–Krieger algebras and crossed products by , Waterloo, ON, 1995 (Fields Inst. Commun.), Volume vol. 12, American Mathematical Society, Providence, RI (1997), pp. 189-212
[2] Free quasi-free states, Pac. J. Math., Volume 177 (1997), pp. 329-368
[3] A-valued semicircular systems, J. Funct. Anal., Volume 166 (1999)
[4] The K-groups of the -algebra of a semicircular family, K-Theory, Volume 7 (1993), pp. 5-7
[5] Free Random Variables, CRM Monograph Ser., vol. 1, American Mathematical Society, Providence, RI, USA, 1992
Cité par Sources :
Commentaires - Politique