Comptes Rendus
Harmonic analysis
Beurling's theorem for the Bessel–Struve transform
Comptes Rendus. Mathématique, Volume 354 (2016) no. 1, pp. 81-85.

The Bessel–Struve transform satisfies some uncertainty principles in a similar way to the Euclidean Fourier transform. Beurling's theorem is obtained for the Bessel–Struve transform FB,Sα.

La transformé de Bessel–Struve satisfait quelques principes d'incertitude de manière similaire au cas de la transformée de Fourier euclidienne. Le théorème de Beurling est obtenu pour la transformée de Bessel–Struve.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2015.09.013

Azzedine Achak 1; Radouan Daher 1; Hind Lahlali 1

1 Department of Mathematics, Faculty of Sciences Aïn Chock, University of Hassan II, Casablanca, Morocco
@article{CRMATH_2016__354_1_81_0,
     author = {Azzedine Achak and Radouan Daher and Hind Lahlali},
     title = {Beurling's theorem for the {Bessel{\textendash}Struve} transform},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {81--85},
     publisher = {Elsevier},
     volume = {354},
     number = {1},
     year = {2016},
     doi = {10.1016/j.crma.2015.09.013},
     language = {en},
}
TY  - JOUR
AU  - Azzedine Achak
AU  - Radouan Daher
AU  - Hind Lahlali
TI  - Beurling's theorem for the Bessel–Struve transform
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 81
EP  - 85
VL  - 354
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crma.2015.09.013
LA  - en
ID  - CRMATH_2016__354_1_81_0
ER  - 
%0 Journal Article
%A Azzedine Achak
%A Radouan Daher
%A Hind Lahlali
%T Beurling's theorem for the Bessel–Struve transform
%J Comptes Rendus. Mathématique
%D 2016
%P 81-85
%V 354
%N 1
%I Elsevier
%R 10.1016/j.crma.2015.09.013
%G en
%F CRMATH_2016__354_1_81_0
Azzedine Achak; Radouan Daher; Hind Lahlali. Beurling's theorem for the Bessel–Struve transform. Comptes Rendus. Mathématique, Volume 354 (2016) no. 1, pp. 81-85. doi : 10.1016/j.crma.2015.09.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.09.013/

[1] A. Beurling, Birkhäuser, Boston, MA, USA (1989), pp. 1-2

[2] A. Bonami; B. Demange; P. Jaming Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms, Rev. Mat. Iberoam., Volume 19 (2002), pp. 22-35

[3] M.G. Cowling; J.F. Price (Lecture Notes in Mathematics), Volume vol. 992, Springer, Berlin (1983), pp. 443-449

[4] S. Hamem; L. Kamoun; S. Negzaoui Cowling–Price type theorem related to Bessel–Struve transform, Arab J. Math. Sci. (2012) | DOI

[5] G.H. Hardy A theorem concerning Fourier transform, J. Lond. Math. Soc., Volume 8 (1993), pp. 227-231

[6] L. Kamoun; S. Negzaoui On the harmonic analysis associated to the Bessel–Struve operator | arXiv

[7] T. Kawazoe; H. Mejjaoli Uncertainty principles for the Dunkl transform, Hiroshima Math. J., Volume 40 (2010), pp. 241-268

[8] H. Mejjaoli An analogue of Beurling–Hörmander's theorem associated with Dunkl–Bessel operator, Fract. Calc. Appl. Anal., Volume 9 (2006) no. 3, pp. 247-264

[9] A. Miyachi A generalization of Hardy, Harmonic Analysis Seminar Held at Izunagoaka Shizuoka-ken, Japan, 1997, pp. 44-51

Cited by Sources:

Comments - Policy