We propose an improved interface condition in order to account for head losses in pipe when some discontinuous cross sections occur.
Nous proposons d'améliorer la condition d'interface afin de prendre en compte la perte de charge pour un écoulement en conduite à section variable discontinue.
Accepted:
Published online:
Jean-Marc Hérard 1, 2; Jonathan Jung 3, 4, 5
@article{CRMATH_2016__354_3_323_0, author = {Jean-Marc H\'erard and Jonathan Jung}, title = {An interface condition to compute compressible flows in variable cross section ducts}, journal = {Comptes Rendus. Math\'ematique}, pages = {323--327}, publisher = {Elsevier}, volume = {354}, number = {3}, year = {2016}, doi = {10.1016/j.crma.2015.10.026}, language = {en}, }
TY - JOUR AU - Jean-Marc Hérard AU - Jonathan Jung TI - An interface condition to compute compressible flows in variable cross section ducts JO - Comptes Rendus. Mathématique PY - 2016 SP - 323 EP - 327 VL - 354 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2015.10.026 LA - en ID - CRMATH_2016__354_3_323_0 ER -
Jean-Marc Hérard; Jonathan Jung. An interface condition to compute compressible flows in variable cross section ducts. Comptes Rendus. Mathématique, Volume 354 (2016) no. 3, pp. 323-327. doi : 10.1016/j.crma.2015.10.026. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.10.026/
[1] B. Audebert, J.-M. Hérard, X. Martin, O. Touazi, A simple integral approach to compute flows in ducts with variable cross section, EDF report H-I85-2014-05201-EN, , submitted for publication in revised form in 2014. | HAL
[2] A robust and entropy-satisfying numerical scheme for fluid flows in discontinuous nozzles, SIAM J. Sci. Comput., Volume 25 (2004), pp. 2050-2065
[3] Non-Linear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well Balanced Schemes for Sources, Frontiers in Mathematics, Birkhäuser, 2004
[4] Toolbox CDMATH https://github.com/PROJECT-CDMATH
[5] S. Dellacherie, K. Herilus, J. Jung, A. Mekkas, Présentation de la librairie libre CDMATH couplée à SALOME et PARAVIEW. Application à la résolution de systèmes de loi de conservation dans des domaines complexes, in preparation.
[6] A two-fluid hyperbolic model in a porous medium, ESAIM: Math. Model. Numer. Anal., Volume 44 (2010), pp. 1319-1348
[7] Multidimensional computations of a two-fluid hyperbolic model in a porous medium, Int. J. Finite Vol., Volume 7 (2010), pp. 1-33 | HAL
[8] A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms, Math. Models Methods Appl. Sci., Volume 11 (2001), pp. 339-365
[9] Un schéma-équilibre adapté aux lois de conservation scalaires non-homogènes, C. R. Acad. Sci. Paris, Ser. I, Volume 323 (1996), pp. 543-546
[10] A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal., Volume 33 (1996), pp. 1-16
[11] Schémas numériques adaptés aux accélérateurs multicoeurs pour les écoulements bifluides, Université de Strasbourg, 2013 https://tel.archives-ouvertes.fr/tel-00876159v2 (PhD thesis)
[12] Numerical solutions to compressible flows in a nozzle with variable cross-section, SIAM J. Numer. Anal., Volume 43 (2006), pp. 796-824
Cited by Sources:
Comments - Policy