We prove the Marchenko–Pastur theorem for random matrices with i.i.d. columns and a general dependence structure within the columns by a simple modification of the standard Cauchy–Stieltjes resolvent method.
Nous prouvons le théorème de Marchenko–Pastur pour les matrices aléatoires avec des colonnes i.i.d. et une structure de dépendance générale à l'intérieur des colonnes par une simple modification de la méthode standard résolvante de Cauchy–Stieltjes standard.
Accepted:
Published online:
Pavel Yaskov 1, 2
@article{CRMATH_2016__354_3_319_0, author = {Pavel Yaskov}, title = {A short proof of the {Marchenko{\textendash}Pastur} theorem}, journal = {Comptes Rendus. Math\'ematique}, pages = {319--322}, publisher = {Elsevier}, volume = {354}, number = {3}, year = {2016}, doi = {10.1016/j.crma.2015.12.008}, language = {en}, }
Pavel Yaskov. A short proof of the Marchenko–Pastur theorem. Comptes Rendus. Mathématique, Volume 354 (2016) no. 3, pp. 319-322. doi : 10.1016/j.crma.2015.12.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.12.008/
[1] On the Marchenko–Pastur and circular laws for some classes of random matrices with dependent entries, Electron. J. Probab., Volume 16 (2011), pp. 1065-1095
[2] Some remarks on the Dozier–Silverstein theorem for random matrices with dependent entries, Random Matrices: Theory Appl., Volume 2 (2013) (46pp)
[3] Large sample covariance matrices without independence structures in columns, Stat. Sin., Volume 18 (2008), pp. 425-442
[4] On the empirical distribution of eigenvalues of a class of large dimensional random matrices, J. Multivar. Anal., Volume 54 (1995), pp. 175-192
[5] Spectral analysis of networks with random topologies, SIAM J. Appl. Math., Volume 32 (1977) no. 2, pp. 499-519
[6] On the convergence of sums of independent random variables, Math. Proc. Camb. Philos. Soc., Volume 82 (1977), pp. 439-446
[7] Some limit theorems for the eigenvalues of a sample covariance matrix, J. Multivar. Anal., Volume 12 (1982), pp. 1-38
[8] Distribution of eigenvalues in certain sets of random matrices, Mat. Sb. (N. S.), Volume 72 (1967), pp. 507-536
[9] On the limiting empirical measure of eigenvalues of the sum of rank one matrices with log-concave distribution, Stud. Math., Volume 195 (2009), pp. 11-29
[10] On the spectrum of random matrices, Teor. Mat. Fiz., Volume 10 (1972), pp. 102-112
[11] Eigenvalue Distribution of Large Random Matrices, Mathematical Surveys and Monographs, vol. 171, American Mathematical Society, Providence, RI, USA, 2011
[12] Topics in Random Matrix Theory, Graduate Studies in Mathematics, vol. 132, American Mathematical Society, Providence, RI, USA, 2012
[13] The strong limits of random matrix spectra for sample matrices of independent elements, Ann. Probab., Volume 6 (1978) no. 1, pp. 1-18
[14] Limit theorem for the eigenvalues of the sample covariance matrix when the underlying distribution is isotropic, Teor. Veroâtn. Primen., Volume 30 (1985) no. 4, pp. 810-816
Cited by Sources:
Comments - Policy