[Propriété d'anti-concentration pour les digraphes aléatoires et invertibilité de leur matrice d'adjacence]
Soit l'ensemble des graphes orientés d-réguliers à n sommets. Soit G un élément choisi uniformément au hasard dans et M sa matrice d'adjacente. On montre que M est inversible avec probabilité supérieure à pour , où sont des constantes universelles positives. Afin d'établir ce résultat, nous montrons certaines propriétés des graphes orientés d-réguliers. Parmi celles-ci, une propriété d'anti-concentration de type Littlewood–Offord. Soit J un sous-ensemble de sommets de G de taille . Soit l'indicateur du fait que le sommet i est connecté à J ; on note . On montre alors que δ n'est concentré autour d'aucun sommet du cube. Cette propriété reste vraie si une partie du graphe est fixée.
Let be the set of all directed d-regular graphs on n vertices. Let G be a graph chosen uniformly at random from and M be its adjacency matrix. We show that M is invertible with probability at least for , where are positive absolute constants. To this end, we establish a few properties of directed d-regular graphs. One of them, a Littlewood–Offord-type anti-concentration property, is of independent interest: let J be a subset of vertices of G with . Let be the indicator of the event that the vertex i is connected to J and . Then δ is not concentrated around any vertex of the cube. This property holds even if a part of the graph is fixed.
Accepté le :
Publié le :
Alexander E. Litvak 1 ; Anna Lytova 1 ; Konstantin Tikhomirov 1 ; Nicole Tomczak-Jaegermann 1 ; Pierre Youssef 2
@article{CRMATH_2016__354_2_121_0, author = {Alexander E. Litvak and Anna Lytova and Konstantin Tikhomirov and Nicole Tomczak-Jaegermann and Pierre Youssef}, title = {Anti-concentration property for random digraphs and invertibility of their adjacency matrices}, journal = {Comptes Rendus. Math\'ematique}, pages = {121--124}, publisher = {Elsevier}, volume = {354}, number = {2}, year = {2016}, doi = {10.1016/j.crma.2015.12.002}, language = {en}, }
TY - JOUR AU - Alexander E. Litvak AU - Anna Lytova AU - Konstantin Tikhomirov AU - Nicole Tomczak-Jaegermann AU - Pierre Youssef TI - Anti-concentration property for random digraphs and invertibility of their adjacency matrices JO - Comptes Rendus. Mathématique PY - 2016 SP - 121 EP - 124 VL - 354 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2015.12.002 LA - en ID - CRMATH_2016__354_2_121_0 ER -
%0 Journal Article %A Alexander E. Litvak %A Anna Lytova %A Konstantin Tikhomirov %A Nicole Tomczak-Jaegermann %A Pierre Youssef %T Anti-concentration property for random digraphs and invertibility of their adjacency matrices %J Comptes Rendus. Mathématique %D 2016 %P 121-124 %V 354 %N 2 %I Elsevier %R 10.1016/j.crma.2015.12.002 %G en %F CRMATH_2016__354_2_121_0
Alexander E. Litvak; Anna Lytova; Konstantin Tikhomirov; Nicole Tomczak-Jaegermann; Pierre Youssef. Anti-concentration property for random digraphs and invertibility of their adjacency matrices. Comptes Rendus. Mathématique, Volume 354 (2016) no. 2, pp. 121-124. doi : 10.1016/j.crma.2015.12.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.12.002/
[1] A short survey of Stein's method, Proceedings ICM, vol. 4, 2014, pp. 1-24
[2] Discrepancy properties for random regular digraphs, Random Struct. Algorithms (2016) (in press)
[3] On the singularity of adjacency matrices for random regular digraphs, Probab. Theory Related Fields (2016) | DOI
[4] On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc., Volume 51 (1945), pp. 898-902
[5] Random structures and algorithms, Proceedings ICM, vol. 1, 2014, pp. 311-340
[6] Random regular graphs of high degree, Random Struct. Algorithms, Volume 18 (2001), pp. 346-363
[7] Adjacency matrices of random digraphs: singularity and anti-concentration | arXiv
[8] Subgraphs of random graphs with specified degrees, Congr. Numer., Volume 33 (1981), pp. 213-223
[9] Non-asymptotic theory of random matrices: extreme singular values, Proceedings ICM, vol. 3, 2010, pp. 1576-1602
[10] Partitions and their representative graphs, Amer. J. Math., Volume 73 (1951), pp. 663-689
[11] From the Littlewood–Offord problem to the circular law: universality of the spectral distribution of random matrices, Bull. Amer. Math. Soc. (N. S.), Volume 46 (2009), pp. 377-396
[12] Random discrete matrices, Horizons of combinatorics, Bolyai Soc. Math. Stud., Volume 17 (2008), pp. 257-280
[13] Combinatorial problems in random matrix theory, Proceedings ICM, vol. 4, 2014, pp. 489-508
Cité par Sources :
Commentaires - Politique