In this article, we give a short algebraic proof that all closed intervals in a γ-Cambrian semilattice are trim for any Coxeter group W and any Coxeter element . This means that if such an interval has length k, then there exists a maximal chain of length k consisting of left-modular elements, and there are precisely k join- and k meet-irreducible elements in this interval. Consequently, every graded interval in is distributive. This problem was open for any Coxeter group that is not a Weyl group.
Dans cet article, nous donnons une démonstration courte et algébrique du fait que tous les intervalles bornés d'un demi-treillis γ-cambrien sont sveltes pour tout groupe de Coxeter W et tout élément de Coxeter . Cela signifie que, si un tel intervalle a pour longueur k, il existe une chaîne de longueur k consistant en éléments modulaires à gauche, et il y a exactement k éléments sup-irréductibles et k éléments inf-irréductibles. En conséquence, il s'ensuit que chaque intervalle gradué est distributif. Ce problème était ouvert pour tout groupe de Coxeter qui n'est pas un groupe de Weyl.
Accepted:
Published online:
Henri Mühle 1
@article{CRMATH_2016__354_2_113_0, author = {Henri M\"uhle}, title = {Trimness of closed intervals in {Cambrian} semilattices}, journal = {Comptes Rendus. Math\'ematique}, pages = {113--120}, publisher = {Elsevier}, volume = {354}, number = {2}, year = {2016}, doi = {10.1016/j.crma.2015.12.004}, language = {en}, }
Henri Mühle. Trimness of closed intervals in Cambrian semilattices. Comptes Rendus. Mathématique, Volume 354 (2016) no. 2, pp. 113-120. doi : 10.1016/j.crma.2015.12.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.12.004/
[1] Combinatorics of Coxeter Groups, Springer, New York, 2005
[2] A characterization of semi-distributivity, Algebra Universalis, Volume 5 (1975), pp. 72-75
[3] Introduction to Lattices and Order, Cambridge University Press, Cambridge, 2002
[4] Characterizations of finite lattices that are bounded-homomorphic images or sublattices of free lattices, Canad. J. Math., Volume 31 (1979), pp. 69-78
[5] Free Lattices, American Mathematical Society, Providence, 1995
[6] Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge, 1990
[7] Noncrossing partitions and representations of quivers, Compos. Math., Volume 145 (2009), pp. 1533-1562
[8] On the topology of the Cambrian semilattices, Electron. J. Combin., Volume 20 (2013)
[9] Left-modular elements of lattices, J. Combin. Theory, Ser. A, Volume 91 (2000), pp. 369-385
[10] Primes, irreducibles and extremal lattices, Order, Volume 9 (1992), pp. 265-290
[11] Associahedra, Tamari Lattices and Related Structures (F. Müller-Hoissen; J.M. Pallo; J. Stasheff, eds.), Birkhäuser, Basel, 2012
[12] EL-Labelings and Canonical Spanning Trees for Subword Complexes, Fields Institute Communication, vol. 69, Springer, New York, 2013
[13] Lattice and order properties of the poset of regions in a hyperplane arrangement, Algebra Universalis, Volume 50 (2003), pp. 179-205
[14] Cambrian lattices, Adv. Math., Volume 205 (2006), pp. 313-353
[15] Sortable elements and Cambrian lattices, Algebra Universalis, Volume 56 (2007), pp. 411-437
[16] Sortable elements in infinite coxeter groups, Trans. Amer. Math. Soc., Volume 363 (2011), pp. 699-761
[17] Sublattices of associahedra and permutohedra, Adv. Appl. Math., Volume 51 (2013), pp. 419-445
[18] An analogue of distributivity for ungraded lattices, Order, Volume 23 (2006), pp. 249-269
Cited by Sources:
☆ This work was funded by the FWF Research Grant No. Z130-N13, and by a Public Grant overseen by the French National Research Agency (ANR) as part of the “Investissements d'Avenir” Program (Reference: ANR-10-LABX-0098).
Comments - Policy