We show that, among the projective planes embedded into the real projective space endowed with the Berger metric, those of least area are exactly the ones obtained by projection of the equatorial spheres of . This result generalizes a classical result for the projective spaces with the standard metric.
On démontre que, parmi les plans projectifs dans l'espace projectif réel , muni de la métrique de Berger, ceux qui réalisent le minimum de l'aire sont exactement ceux qu'on obtient par la projection des sphères équatoriales de . Le résultat généralise un résultat classique pour l'espace projectif muni de la métrique ordinaire.
Accepted:
Published online:
Olga Gil-Medrano 1
@article{CRMATH_2016__354_4_415_0, author = {Olga Gil-Medrano}, title = {Area minimizing projective planes on the projective space of dimension 3 with the {Berger} metric}, journal = {Comptes Rendus. Math\'ematique}, pages = {415--417}, publisher = {Elsevier}, volume = {354}, number = {4}, year = {2016}, doi = {10.1016/j.crma.2015.12.011}, language = {en}, }
Olga Gil-Medrano. Area minimizing projective planes on the projective space of dimension 3 with the Berger metric. Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 415-417. doi : 10.1016/j.crma.2015.12.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.12.011/
[1] Generalized Hopf differentials, Mat. Contemp., Volume 28 (2005), pp. 1-28
[2] Du côté de chez Pu, Ann. Sci. Éc. Norm. Supér., Volume 5 (1972), pp. 1-44
[3] Area-minimizing vector fields on 2-spheres, J. Reine Angew. Math., Volume 640 (2010), pp. 85-99
[4] Area-minimizing projective planes in 3-manifolds, Commun. Pure Appl. Math., Volume LXIII (2010), pp. 1237-1247
[5] Constant mean curvature surfaces in 3-dimensional Thurston geometries, Proceedings of the International Congress of Mathematicians, vol. II, Hindustan Book Agency, New Delhi, 2010, pp. 830-861
[6] Minimal compacta in Riemannian manifolds and Reifensberg's conjecture, Math. USSR, Volume 6 (1972), pp. 1037-1066
[7] Rotationally invariant constant mean curvature surfaces in homogeneous 3-manifolds, Differ. Geom. Appl., Volume 28 (2010), pp. 593-607
Cited by Sources:
Comments - Policy