Comptes Rendus
Differential geometry/Dynamical systems
Remarks on the symplectic invariance of Aubry–Mather sets
[Remarques sur l'invariance symplectique des ensembles d'Aubry–Mather]
Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 419-423.

On discute et clarifie quelques questions liées à la généralisation du théorème de Bernard sur l'invariance symplectique des ensembles d'Aubry, de Mather et de Mañé aux cas de classes de cohomologie non nulles et de symplectomorphismes non exacts et non nécessairement homotopes à l'identité.

In this note, we discuss and clarify some issues related to the generalization of Bernard's theorem on the symplectic invariance of Aubry, Mather and Mañé sets, to the cases of non-zero cohomology classes or non-exact symplectomorphisms, not necessarily homotopic to the identity.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2016.01.001

Marco Mazzucchelli 1 ; Alfonso Sorrentino 2

1 CNRS and UMPA, École normale Supérieure de Lyon, France
2 Dipartimento di Matematica, Università degli Studi di Roma “Tor Vergata”, Italy
@article{CRMATH_2016__354_4_419_0,
     author = {Marco Mazzucchelli and Alfonso Sorrentino},
     title = {Remarks on the symplectic invariance of {Aubry{\textendash}Mather} sets},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {419--423},
     publisher = {Elsevier},
     volume = {354},
     number = {4},
     year = {2016},
     doi = {10.1016/j.crma.2016.01.001},
     language = {en},
}
TY  - JOUR
AU  - Marco Mazzucchelli
AU  - Alfonso Sorrentino
TI  - Remarks on the symplectic invariance of Aubry–Mather sets
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 419
EP  - 423
VL  - 354
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2016.01.001
LA  - en
ID  - CRMATH_2016__354_4_419_0
ER  - 
%0 Journal Article
%A Marco Mazzucchelli
%A Alfonso Sorrentino
%T Remarks on the symplectic invariance of Aubry–Mather sets
%J Comptes Rendus. Mathématique
%D 2016
%P 419-423
%V 354
%N 4
%I Elsevier
%R 10.1016/j.crma.2016.01.001
%G en
%F CRMATH_2016__354_4_419_0
Marco Mazzucchelli; Alfonso Sorrentino. Remarks on the symplectic invariance of Aubry–Mather sets. Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 419-423. doi : 10.1016/j.crma.2016.01.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.001/

[1] P. Bernard Symplectic aspects of Mather theory, Duke Math. J., Volume 136 (2007) no. 3, pp. 401-420

[2] P. Bernard; J. dos Santos A geometric definition of the Aubry–Mather set, J. Topol. Anal., Volume 2 (2010) no. 3, pp. 385-393

[3] P. Bernard; J. dos Santos A geometric definition of the Mañé–Mather set and a theorem of Marie-Claude Arnaud, Math. Proc. Cambridge Philos. Soc., Volume 152 (2012) no. 1, pp. 167-178

[4] M.J. Dias Carneiro On minimizing measures of the action of autonomous Lagrangians, Nonlinearity, Volume 8 (1995) no. 6, pp. 1077-1085

[5] J.N. Mather Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z., Volume 207 (1991) no. 2, pp. 169-207

[6] J.N. Mather Variational construction of connecting orbits, Ann. Inst. Fourier (Grenoble), Volume 43 (1993) no. 5, pp. 1349-1386

[7] G.P. Paternain; L. Polterovich; K.F. Siburg Boundary rigidity for Lagrangian submanifolds, non-removable intersections, and Aubry–Mather theory, Mosc. Math. J., Volume 3 (2013) no. 2, pp. 593-619

[8] G.P. Paternain; A. Sorrentino Symplectic and contact properties of the Mañé critical value of the universal cover, NoDEA: Nonlinear Differ. Equ. Appl., Volume 21 (2014), pp. 679-708

[9] A. Sorrentino Action-Minimizing Methods in Hamiltonian Dynamics: An Introduction to Aubry–Mather Theory, Mathematical Notes Series, vol. 50, Princeton University Press, Princeton, NJ, USA, 2015 (ISBN: 9780691164502)

[10] A. Sorrentino On the integrability of Tonelli Hamiltonians, Trans. Amer. Math. Soc., Volume 363 (2011) no. 10, pp. 5071-5089

[11] A. Sorrentino; C. Viterbo Action minimizing properties and distances on the group of Hamiltonian diffeomorphisms, Geom. Topol., Volume 14 (2010) no. 4, pp. 2383-2403

[12] C. Viterbo, Symplectic homogenization, preprint, 2008.

  • Misha Bialy; Daniel Tsodikovich Locally maximizing orbits for multi-dimensional twist maps and Birkhoff billiards, Transactions of the American Mathematical Society (2025) | DOI:10.1090/tran/9327
  • Misha Bialy; Daniel Tsodikovich Locally maximising orbits for the non-standard generating function of convex billiards and applications, Nonlinearity, Volume 36 (2023) no. 3, pp. 2001-2019 | DOI:10.1088/1361-6544/acbb50 | Zbl:1521.37040
  • Vadim Kaloshin; Alfonso Sorrentino Inverse problems and rigidity questions in billiard dynamics, Ergodic Theory and Dynamical Systems, Volume 42 (2022) no. 3, pp. 1023-1056 | DOI:10.1017/etds.2021.37 | Zbl:1495.37029
  • Xiaoming Wang Aubry-Mather sets in semilinear asymmetric Duffing equations, Advances in Difference Equations, Volume 2016 (2016), p. 12 (Id/No 297) | DOI:10.1186/s13662-016-1024-y | Zbl:1419.34123

Cité par 4 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: