[Remarques sur l'invariance symplectique des ensembles d'Aubry–Mather]
On discute et clarifie quelques questions liées à la généralisation du théorème de Bernard sur l'invariance symplectique des ensembles d'Aubry, de Mather et de Mañé aux cas de classes de cohomologie non nulles et de symplectomorphismes non exacts et non nécessairement homotopes à l'identité.
In this note, we discuss and clarify some issues related to the generalization of Bernard's theorem on the symplectic invariance of Aubry, Mather and Mañé sets, to the cases of non-zero cohomology classes or non-exact symplectomorphisms, not necessarily homotopic to the identity.
Accepté le :
Publié le :
Marco Mazzucchelli 1 ; Alfonso Sorrentino 2
@article{CRMATH_2016__354_4_419_0, author = {Marco Mazzucchelli and Alfonso Sorrentino}, title = {Remarks on the symplectic invariance of {Aubry{\textendash}Mather} sets}, journal = {Comptes Rendus. Math\'ematique}, pages = {419--423}, publisher = {Elsevier}, volume = {354}, number = {4}, year = {2016}, doi = {10.1016/j.crma.2016.01.001}, language = {en}, }
Marco Mazzucchelli; Alfonso Sorrentino. Remarks on the symplectic invariance of Aubry–Mather sets. Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 419-423. doi : 10.1016/j.crma.2016.01.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.001/
[1] Symplectic aspects of Mather theory, Duke Math. J., Volume 136 (2007) no. 3, pp. 401-420
[2] A geometric definition of the Aubry–Mather set, J. Topol. Anal., Volume 2 (2010) no. 3, pp. 385-393
[3] A geometric definition of the Mañé–Mather set and a theorem of Marie-Claude Arnaud, Math. Proc. Cambridge Philos. Soc., Volume 152 (2012) no. 1, pp. 167-178
[4] On minimizing measures of the action of autonomous Lagrangians, Nonlinearity, Volume 8 (1995) no. 6, pp. 1077-1085
[5] Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z., Volume 207 (1991) no. 2, pp. 169-207
[6] Variational construction of connecting orbits, Ann. Inst. Fourier (Grenoble), Volume 43 (1993) no. 5, pp. 1349-1386
[7] Boundary rigidity for Lagrangian submanifolds, non-removable intersections, and Aubry–Mather theory, Mosc. Math. J., Volume 3 (2013) no. 2, pp. 593-619
[8] Symplectic and contact properties of the Mañé critical value of the universal cover, NoDEA: Nonlinear Differ. Equ. Appl., Volume 21 (2014), pp. 679-708
[9] Action-Minimizing Methods in Hamiltonian Dynamics: An Introduction to Aubry–Mather Theory, Mathematical Notes Series, vol. 50, Princeton University Press, Princeton, NJ, USA, 2015 (ISBN: 9780691164502)
[10] On the integrability of Tonelli Hamiltonians, Trans. Amer. Math. Soc., Volume 363 (2011) no. 10, pp. 5071-5089
[11] Action minimizing properties and distances on the group of Hamiltonian diffeomorphisms, Geom. Topol., Volume 14 (2010) no. 4, pp. 2383-2403
[12] C. Viterbo, Symplectic homogenization, preprint, 2008.
- Locally maximizing orbits for multi-dimensional twist maps and Birkhoff billiards, Transactions of the American Mathematical Society (2025) | DOI:10.1090/tran/9327
- Locally maximising orbits for the non-standard generating function of convex billiards and applications, Nonlinearity, Volume 36 (2023) no. 3, pp. 2001-2019 | DOI:10.1088/1361-6544/acbb50 | Zbl:1521.37040
- Inverse problems and rigidity questions in billiard dynamics, Ergodic Theory and Dynamical Systems, Volume 42 (2022) no. 3, pp. 1023-1056 | DOI:10.1017/etds.2021.37 | Zbl:1495.37029
- Aubry-Mather sets in semilinear asymmetric Duffing equations, Advances in Difference Equations, Volume 2016 (2016), p. 12 (Id/No 297) | DOI:10.1186/s13662-016-1024-y | Zbl:1419.34123
Cité par 4 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier