Comptes Rendus
Differential geometry
Extremal metrics for the Q-curvature in three dimensions
Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 407-410.

We construct contact forms with constant Q-curvature on compact three-dimensional CR manifolds that admit a pseudo-Einstein contact form and satisfy some natural positivity conditions. These contact forms are obtained by minimizing the CR analogue of the II-functional from conformal geometry. Two crucial steps are to show that the P-operator can be regarded as an elliptic pseudodifferential operator and to compute the leading-order terms of the asymptotic expansion of the Green's function for P.

On construit des formes de contact à Q-courbure constante sur les variétés de Cauchy–Riemann de dimension 3 qui admettent une pseudo-forme de contact d'Einstein et satisfont certaines conditions naturelles de positivité. Ces formes sont obtenues en minimisant l'analogue en CR-géométrie de la II-fonctionelle en géométrie conforme. Cette construction repose sur deux étapes cruciales. On montre que le P-opérateur peut être vu comme un opérateur pseudo-differentiel elliptique et on calcule les termes dominants du développement asymtotique de la forme de Green pour P.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2015.12.012

Jeffrey S. Case 1; Chin-Yu Hsiao 2; Paul Yang 3

1 Department of Mathematics, McAllister Building, The Pennsylvania State University, University Park, PA 16802, United States
2 Institute of Mathematics, Academia Sinica, 6F, Astronomy-Mathematics Building, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
3 Department of Mathematics, Princeton University, Princeton, NJ 08544, United States
@article{CRMATH_2016__354_4_407_0,
     author = {Jeffrey S. Case and Chin-Yu Hsiao and Paul Yang},
     title = {Extremal metrics for the {\protect\emph{Q}\protect\textsuperscript{'}-curvature} in three dimensions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {407--410},
     publisher = {Elsevier},
     volume = {354},
     number = {4},
     year = {2016},
     doi = {10.1016/j.crma.2015.12.012},
     language = {en},
}
TY  - JOUR
AU  - Jeffrey S. Case
AU  - Chin-Yu Hsiao
AU  - Paul Yang
TI  - Extremal metrics for the Q′-curvature in three dimensions
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 407
EP  - 410
VL  - 354
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2015.12.012
LA  - en
ID  - CRMATH_2016__354_4_407_0
ER  - 
%0 Journal Article
%A Jeffrey S. Case
%A Chin-Yu Hsiao
%A Paul Yang
%T Extremal metrics for the Q′-curvature in three dimensions
%J Comptes Rendus. Mathématique
%D 2016
%P 407-410
%V 354
%N 4
%I Elsevier
%R 10.1016/j.crma.2015.12.012
%G en
%F CRMATH_2016__354_4_407_0
Jeffrey S. Case; Chin-Yu Hsiao; Paul Yang. Extremal metrics for the Q-curvature in three dimensions. Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 407-410. doi : 10.1016/j.crma.2015.12.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.12.012/

[1] S. Alexakis The Decomposition of Global Conformal Invariants, Ann. Math. Stud., vol. 182, Princeton University Press, Princeton, NJ, USA, 2012

[2] W. Beckner Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality, Ann. Math. (2), Volume 138 (1993) no. 1, pp. 213-242

[3] L. Boutet de Monvel; J. Sjöstrand Sur la singularité des noyaux de Bergman et de Szegő, Rennes, France, 1975 (Astérisque), Volume vol. 34–35, Soc. Math. France, Paris (1976), pp. 123-164

[4] T.P. Branson Sharp inequalities, the functional determinant, and the complementary series, Trans. Amer. Math. Soc., Volume 347 (1995) no. 10, pp. 3671-3742

[5] T.P. Branson; S.-Y.A. Chang; P.C. Yang Estimates and extremals for zeta function determinants on four-manifolds, Commun. Math. Phys., Volume 149 (1992) no. 2, pp. 241-262

[6] T.P. Branson; L. Fontana; C. Morpurgo Moser–Trudinger and Beckner–Onofri's inequalities on the CR sphere, Ann. Math. (2), Volume 177 (2013) no. 1, pp. 1-52

[7] J.S. Case; P.C. Yang A Paneitz-type operator for CR pluriharmonic functions, Bull. Inst. Math. Acad. Sin. (N. S.), Volume 8 (2013) no. 3, pp. 285-322

[8] J.S. Case, C.-Y. Hsiao, P.C. Yang, Extremal metrics for the Q-curvature in three dimensions, Preprint.

[9] S.-Y.A. Chang; P.C. Yang Extremal metrics of zeta function determinants on 4-manifolds, Ann. Math. (2), Volume 142 (1995) no. 1, pp. 171-212

[10] S. Chanillo; H.-L. Chiu; P. Yang Embeddability for 3-dimensional Cauchy–Riemann manifolds and CR Yamabe invariants, Duke Math. J., Volume 161 (2012) no. 15, pp. 2909-2921

[11] C. Fefferman Monge–Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains, Ann. Math. (2), Volume 103 (1976) no. 2, pp. 395-416

[12] L. Fontana; C. Morpurgo Adams inequalities on measure spaces, Adv. Math., Volume 226 (2011) no. 6, pp. 5066-5119

[13] C.R. Graham; J.M. Lee Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains, Duke Math. J., Volume 57 (1988) no. 3, pp. 697-720

[14] C.R. Graham; M. Zworski Scattering matrix in conformal geometry, Invent. Math., Volume 152 (2003) no. 1, pp. 89-118

[15] C.R. Graham; R. Jenne; L.J. Mason; G.A.J. Sparling Conformally invariant powers of the Laplacian. I. Existence, J. Lond. Math. Soc. (2), Volume 46 (1992) no. 3, pp. 557-565

[16] M.J. Gursky The principal eigenvalue of a conformally invariant differential operator, with an application to semilinear elliptic PDE, Commun. Math. Phys., Volume 207 (1999) no. 1, pp. 131-143

[17] K. Hirachi Scalar pseudo-Hermitian invariants and the Szegő kernel on three-dimensional CR manifolds, Osaka, 1990 (Lecture Notes in Pure and Appl. Math.), Volume vol. 143, Dekker, New York (1993), pp. 67-76

[18] K. Hirachi Q-prime curvature on CR manifolds, Differ. Geom. Appl., Volume 33 (2014) no. suppl, pp. 213-245

[19] C.-Y. Hsiao Projections in several complex variables, Mém. Soc. Math. Fr. (N.S.), Volume 123 (2010), p. 131

[20] J.M. Lee Pseudo-Einstein structures on CR manifolds, Amer. J. Math., Volume 110 (1988) no. 1, pp. 157-178

[21] B. Osgood; R. Phillips; P. Sarnak Extremals of determinants of Laplacians, J. Funct. Anal., Volume 80 (1988) no. 1, pp. 148-211

Cited by Sources:

Comments - Policy