We construct contact forms with constant -curvature on compact three-dimensional CR manifolds that admit a pseudo-Einstein contact form and satisfy some natural positivity conditions. These contact forms are obtained by minimizing the CR analogue of the II-functional from conformal geometry. Two crucial steps are to show that the -operator can be regarded as an elliptic pseudodifferential operator and to compute the leading-order terms of the asymptotic expansion of the Green's function for .
On construit des formes de contact à -courbure constante sur les variétés de Cauchy–Riemann de dimension 3 qui admettent une pseudo-forme de contact d'Einstein et satisfont certaines conditions naturelles de positivité. Ces formes sont obtenues en minimisant l'analogue en CR-géométrie de la II-fonctionelle en géométrie conforme. Cette construction repose sur deux étapes cruciales. On montre que le -opérateur peut être vu comme un opérateur pseudo-differentiel elliptique et on calcule les termes dominants du développement asymtotique de la forme de Green pour .
Accepted:
Published online:
Jeffrey S. Case 1; Chin-Yu Hsiao 2; Paul Yang 3
@article{CRMATH_2016__354_4_407_0, author = {Jeffrey S. Case and Chin-Yu Hsiao and Paul Yang}, title = {Extremal metrics for the {\protect\emph{Q}\protect\textsuperscript{'}-curvature} in three dimensions}, journal = {Comptes Rendus. Math\'ematique}, pages = {407--410}, publisher = {Elsevier}, volume = {354}, number = {4}, year = {2016}, doi = {10.1016/j.crma.2015.12.012}, language = {en}, }
Jeffrey S. Case; Chin-Yu Hsiao; Paul Yang. Extremal metrics for the Q′-curvature in three dimensions. Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 407-410. doi : 10.1016/j.crma.2015.12.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.12.012/
[1] The Decomposition of Global Conformal Invariants, Ann. Math. Stud., vol. 182, Princeton University Press, Princeton, NJ, USA, 2012
[2] Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality, Ann. Math. (2), Volume 138 (1993) no. 1, pp. 213-242
[3] Sur la singularité des noyaux de Bergman et de Szegő, Rennes, France, 1975 (Astérisque), Volume vol. 34–35, Soc. Math. France, Paris (1976), pp. 123-164
[4] Sharp inequalities, the functional determinant, and the complementary series, Trans. Amer. Math. Soc., Volume 347 (1995) no. 10, pp. 3671-3742
[5] Estimates and extremals for zeta function determinants on four-manifolds, Commun. Math. Phys., Volume 149 (1992) no. 2, pp. 241-262
[6] Moser–Trudinger and Beckner–Onofri's inequalities on the CR sphere, Ann. Math. (2), Volume 177 (2013) no. 1, pp. 1-52
[7] A Paneitz-type operator for CR pluriharmonic functions, Bull. Inst. Math. Acad. Sin. (N. S.), Volume 8 (2013) no. 3, pp. 285-322
[8] J.S. Case, C.-Y. Hsiao, P.C. Yang, Extremal metrics for the -curvature in three dimensions, Preprint.
[9] Extremal metrics of zeta function determinants on 4-manifolds, Ann. Math. (2), Volume 142 (1995) no. 1, pp. 171-212
[10] Embeddability for 3-dimensional Cauchy–Riemann manifolds and CR Yamabe invariants, Duke Math. J., Volume 161 (2012) no. 15, pp. 2909-2921
[11] Monge–Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains, Ann. Math. (2), Volume 103 (1976) no. 2, pp. 395-416
[12] Adams inequalities on measure spaces, Adv. Math., Volume 226 (2011) no. 6, pp. 5066-5119
[13] Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains, Duke Math. J., Volume 57 (1988) no. 3, pp. 697-720
[14] Scattering matrix in conformal geometry, Invent. Math., Volume 152 (2003) no. 1, pp. 89-118
[15] Conformally invariant powers of the Laplacian. I. Existence, J. Lond. Math. Soc. (2), Volume 46 (1992) no. 3, pp. 557-565
[16] The principal eigenvalue of a conformally invariant differential operator, with an application to semilinear elliptic PDE, Commun. Math. Phys., Volume 207 (1999) no. 1, pp. 131-143
[17] Scalar pseudo-Hermitian invariants and the Szegő kernel on three-dimensional CR manifolds, Osaka, 1990 (Lecture Notes in Pure and Appl. Math.), Volume vol. 143, Dekker, New York (1993), pp. 67-76
[18] Q-prime curvature on CR manifolds, Differ. Geom. Appl., Volume 33 (2014) no. suppl, pp. 213-245
[19] Projections in several complex variables, Mém. Soc. Math. Fr. (N.S.), Volume 123 (2010), p. 131
[20] Pseudo-Einstein structures on CR manifolds, Amer. J. Math., Volume 110 (1988) no. 1, pp. 157-178
[21] Extremals of determinants of Laplacians, J. Funct. Anal., Volume 80 (1988) no. 1, pp. 148-211
Cited by Sources:
Comments - Policy