Comptes Rendus
Analytic geometry/Differential geometry
A Riemann–Roch–Grothendieck theorem for flat fibrations with complex fibers
Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 401-406.

We consider a proper flat fibration with real base and complex fibers. First we construct odd characteristic classes for such fibrations by a method that generalizes constructions of Bismut–Lott [5]. Then we consider the direct image of a fiberwise holomorphic vector bundle, which is a flat vector bundle on the base. We give a Riemann–Roch–Grothendieck theorem calculating the odd real characteristic classes of this flat vector bundle.

On considère une fibration propre plate de base réelle et de fibre complexe. On construit d'abord des classes caractéristiques impaires [5] associées qui généralisent des constructions de Bismut–Lott [5]. Puis on considère l'image directe d'un fibré vectoriel holomorphe dans la fibre, qui est un fibré vectoriel plat sur la base. On donne un théorème de Riemann–Roch–Grothendieck calculant les classes caractéristiques impaires de ce fibré plat.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.01.011

Yeping Zhang 1

1 Département de mathématiques, bâtiment 425, faculté des sciences d'Orsay, Université Paris-Sud, 91405 Orsay cedex, France
@article{CRMATH_2016__354_4_401_0,
     author = {Yeping Zhang},
     title = {A {Riemann{\textendash}Roch{\textendash}Grothendieck} theorem for flat fibrations with complex fibers},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {401--406},
     publisher = {Elsevier},
     volume = {354},
     number = {4},
     year = {2016},
     doi = {10.1016/j.crma.2016.01.011},
     language = {en},
}
TY  - JOUR
AU  - Yeping Zhang
TI  - A Riemann–Roch–Grothendieck theorem for flat fibrations with complex fibers
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 401
EP  - 406
VL  - 354
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2016.01.011
LA  - en
ID  - CRMATH_2016__354_4_401_0
ER  - 
%0 Journal Article
%A Yeping Zhang
%T A Riemann–Roch–Grothendieck theorem for flat fibrations with complex fibers
%J Comptes Rendus. Mathématique
%D 2016
%P 401-406
%V 354
%N 4
%I Elsevier
%R 10.1016/j.crma.2016.01.011
%G en
%F CRMATH_2016__354_4_401_0
Yeping Zhang. A Riemann–Roch–Grothendieck theorem for flat fibrations with complex fibers. Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 401-406. doi : 10.1016/j.crma.2016.01.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.011/

[1] M.F. Atiyah; I.M. Singer The index of elliptic operators, IV, Ann. of Math. (2), Volume 93 (1971), pp. 119-138

[2] J.-M. Bismut The Atiyah–Singer index theorem for families of Dirac operators: two heat equation proofs, Invent. Math., Volume 83 (1986) no. 1, pp. 91-151

[3] J.-M. Bismut; H. Gillet; C. Soulé Analytic torsion and holomorphic determinant bundles, III: quillen metrics on holomorphic determinants, Commun. Math. Phys., Volume 115 (1988) no. 2, pp. 301-351

[4] J.-M. Bismut; K. Köhler Higher analytic torsion forms for direct images and anomaly formulas, J. Algebraic Geom., Volume 1 (1992) no. 4, pp. 647-684

[5] J.-M. Bismut; J. Lott Flat vector bundles, direct images and higher real analytic torsion, J. Amer. Math. Soc., Volume 8 (1995) no. 2, pp. 291-363

[6] R.T. Seeley Complex powers of an elliptic operator, Proc. Sympos. Pure Math., Chicago, IL, 1966, Amer. Math. Soc., Providence, R.I. (1967), pp. 288-307

Cited by Sources:

Comments - Policy