Comptes Rendus
Homological algebra/Algebraic geometry
Equivariant trace formula mod p
Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 335-338.

We give an equivariant version of Anderson's trace formula of L-function module p. As an application, we can prove the Stark's conjecture of Artin–Goss L-values of Drinfeld modules.

Nous donnons une version équivariante de la formule des traces d'Anderson pour les L-fonctions modulo p. Comme application, nous montrons la conjecture de Stark pour les valeurs de fonctions L de Artin–Gross des modules de Drinfeld.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2015.12.014

Jiangxue Fang 1

1 Department of Mathematics, Capital Normal University, Beijing 100148, PR China
@article{CRMATH_2016__354_4_335_0,
     author = {Jiangxue Fang},
     title = {Equivariant trace formula mod \protect\emph{p}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {335--338},
     publisher = {Elsevier},
     volume = {354},
     number = {4},
     year = {2016},
     doi = {10.1016/j.crma.2015.12.014},
     language = {en},
}
TY  - JOUR
AU  - Jiangxue Fang
TI  - Equivariant trace formula mod p
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 335
EP  - 338
VL  - 354
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2015.12.014
LA  - en
ID  - CRMATH_2016__354_4_335_0
ER  - 
%0 Journal Article
%A Jiangxue Fang
%T Equivariant trace formula mod p
%J Comptes Rendus. Mathématique
%D 2016
%P 335-338
%V 354
%N 4
%I Elsevier
%R 10.1016/j.crma.2015.12.014
%G en
%F CRMATH_2016__354_4_335_0
Jiangxue Fang. Equivariant trace formula mod p. Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 335-338. doi : 10.1016/j.crma.2015.12.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.12.014/

[1] G. Anderson An elementary approach to L-functions mod p, J. Number Theory, Volume 80 (2000) no. 2, pp. 291-303

[2] G. Böckle; R. Pink Cohomological Theory of Crystals over Function Fields, EMS Tracts in Mathematics, vol. 9, 2009

[3] J. Fang Special L-values of Abelian t-modules, J. Number Theory, Volume 147 (2015), pp. 300-325

[4] J. Fang Equivariant special L-values of Abelian t-modules | arXiv

[5] L. Taelman Special L-values of Drinfeld modules, Ann. Math. (2), Volume 175 (2012) no. 1, pp. 369-391

Cited by Sources:

Comments - Policy