We show that the isomorphism from the Hochschild cohomology of a poset algebra A to the simplicial cohomology of the classifying space of the category associated with A maps Gerstenhaber's pre-Lie product to Steenrod's cup-one product. On cochains, this map becomes an isomorphism of differential graded homotopy commutative algebras.
On démontre que l'isomorphisme de la cohomologie de Hochschild d'une algèbre poset A à la cohomologie simpliciale du classifiant de la catégorie associé à A applique le produit pré-Lie de Gerstenhaber au produit cup-one de Steenrod. Sur les cochaînes, cette application devient un isomorphisme des algèbres différentielles graduées commutatives à homotopie près.
Accepted:
Published online:
Jerry Lodder 1
@article{CRMATH_2016__354_4_339_0, author = {Jerry Lodder}, title = {Hochschild cohomology of poset algebras and {Steenrod} operations}, journal = {Comptes Rendus. Math\'ematique}, pages = {339--343}, publisher = {Elsevier}, volume = {354}, number = {4}, year = {2016}, doi = {10.1016/j.crma.2016.01.003}, language = {en}, }
Jerry Lodder. Hochschild cohomology of poset algebras and Steenrod operations. Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 339-343. doi : 10.1016/j.crma.2016.01.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.003/
[1] Combinatorial operad actions on cochains, Math. Proc. Camb. Philos. Soc., Volume 137 (2004) no. 1, pp. 135-174
[2] Topological conformal field theories and Calabi–Yau categories, Adv. Math., Volume 210 (2007) no. 1, pp. 165-214
[3] The cohomology structure of an associative algebra, Ann. Math., Volume 78 (1962) no. 2, pp. 267-288
[4] Simplicial cohomology is Hochschild cohomology, J. Pure Appl. Algebra, Volume 30 (1983), pp. 143-156
[5] Self-dual and quasi self-dual algebras, Isr. J. Math., Volume 200 (2014), pp. 193-211
[6] Homotopy G-algebras and moduli space operad, Int. Math. Res. Not., Volume 1995 (1995) no. 3, pp. 141-153
[7] On homotopy limit of homotopy algebras, K-Theory, Arithmetic and Geometry, Lecture Notes in Mathematics, vol. 1289, Springer Verlag, Heidelberg, 1987
[8] On the cohomology groups of an associative algebra, Ann. Math., Volume 46 (1945) no. 1, pp. 58-67
[9] On the cohomology theory for associative algebras, Ann. Math., Volume 47 (1946) no. 3, pp. 568-579
[10] Notes on -algebras, -categories and non-commutative geometry, Homological Mirror Symmetry, Lecture Notes in Physics, vol. 757, Springer Verlag, Heidelberg, 2008
[11] Products of cocycles and extensions of mappings, Ann. Math., Volume 48 (1947) no. 2, pp. 290-320
[12] On the cyclic Deligne conjecture, J. Pure Appl. Algebra, Volume 204 (2006) no. 2, pp. 280-299
Cited by Sources:
Comments - Policy