The purpose of this Note is to prove an identity between the analytic torsion and the value at zero of a dynamical zeta function associated with an acyclic unitarily flat vector bundle on a closed locally symmetric reductive manifold, which solves a conjecture of Fried.
L'objet de cette Note est de démontrer une égalité entre la torsion analytique et la valeur en zéro d'une fonction zêta dynamique associée à un fibré vectoriel unitairement plat sur une variété compacte localement symétrique réductive. Nous démontrons aussi une conjecture de Fried.
Accepted:
Published online:
Shu Shen 1
@article{CRMATH_2016__354_4_433_0, author = {Shu Shen}, title = {Analytic torsion, dynamical zeta functions and orbital integrals}, journal = {Comptes Rendus. Math\'ematique}, pages = {433--436}, publisher = {Elsevier}, volume = {354}, number = {4}, year = {2016}, doi = {10.1016/j.crma.2016.01.008}, language = {en}, }
Shu Shen. Analytic torsion, dynamical zeta functions and orbital integrals. Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 433-436. doi : 10.1016/j.crma.2016.01.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.008/
[1] The hypoelliptic Laplacian on the cotangent bundle, J. Amer. Math. Soc., Volume 18 (2005) no. 2, pp. 379-476
[2] Hypoelliptic Laplacian and Orbital Integrals, Ann. Math. Stud., vol. 177, Princeton University Press, Princeton, NJ, USA, 2011
[3] Equivariant de Rham torsions, Ann. Math., Volume 159 (2004) no. 1, pp. 53-216
[4] An extension of a theorem by Cheeger and Müller, Astérisque, Volume 205 (1992), p. 235
[5] Analytic torsion and the heat equation, Ann. Math., Volume 109 (1979) no. 2, pp. 259-322
[6] Analytic torsion and closed geodesics on hyperbolic manifolds, Invent. Math., Volume 84 (1986) no. 3, pp. 523-540
[7] Lefschetz formulas for flows, the Lefschetz centennial conference, Mexico City, 1984 (Contemp. Math.), Volume vol. 58, Amer. Math. Soc., Providence, RI, USA (1987), pp. 19-69
[8] Characters, asymptotics and n-homology of Harish–Chandra modules, Acta Math., Volume 151 (1983) no. 1–2, pp. 49-151
[9] Infinite cyclic coverings, Michigan State Univ., E. Lansing, Mich., 1967, Prindle, Weber & Schmidt, Boston, MA, USA (1968), pp. 115-133
[10] R-torsion and zeta functions for locally symmetric manifolds, Invent. Math., Volume 105 (1991) no. 1, pp. 185-216
[11] Intersections of discrete subgroups with Cartan subgroups, J. Indian Math. Soc., Volume 34 (1970) no. 3–4, pp. 203-214
[12] Analytic torsion and R-torsion of Riemannian manifolds, Adv. Math., Volume 28 (1978) no. 3, pp. 233-305
[13] Analytic torsion and R-torsion for unimodular representations, J. Amer. Math. Soc., Volume 6 (1993) no. 3, pp. 721-753
[14] R-torsion and the Laplacian on Riemannian manifolds, Adv. Math., Volume 7 (1971), pp. 145-210
[15] On the unitary dual of real reductive Lie groups and the modules: the strongly regular case, Duke Math. J., Volume 96 (1999) no. 3, pp. 521-546
[16] S. Shen, Analytic torsion, dynamical zeta functions and orbital integrals, in press.
[17] Unitarizability of certain series of representations, Ann. Math., Volume 120 (1984) no. 1, pp. 141-187
[18] Unitary representations with nonzero cohomology, Compos. Math., Volume 53 (1984) no. 1, pp. 51-90
Cited by Sources:
Comments - Policy