We extend the Friedrich inequality for the eigenvalues of the Dirac operator on manifolds with boundary under different boundary conditions. The limiting case is then studied and examples are given.
Nous étendons l'inégalité de Friedrich pour les valeurs propres de l'opérateur de Dirac sur les variétés à bord pour différentes conditions à bord. Le cas limite est étudié et des exemples sont donnés.
Accepted:
Published online:
Roger Nakad 1; Julien Roth 2
@article{CRMATH_2016__354_4_425_0, author = {Roger Nakad and Julien Roth}, title = {Lower bounds for the eigenvalues of the {Spin\protect\textsuperscript{\protect\emph{c}}} {Dirac} operator on manifolds with boundary}, journal = {Comptes Rendus. Math\'ematique}, pages = {425--431}, publisher = {Elsevier}, volume = {354}, number = {4}, year = {2016}, doi = {10.1016/j.crma.2015.12.017}, language = {en}, }
TY - JOUR AU - Roger Nakad AU - Julien Roth TI - Lower bounds for the eigenvalues of the Spinc Dirac operator on manifolds with boundary JO - Comptes Rendus. Mathématique PY - 2016 SP - 425 EP - 431 VL - 354 IS - 4 PB - Elsevier DO - 10.1016/j.crma.2015.12.017 LA - en ID - CRMATH_2016__354_4_425_0 ER -
Roger Nakad; Julien Roth. Lower bounds for the eigenvalues of the Spinc Dirac operator on manifolds with boundary. Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 425-431. doi : 10.1016/j.crma.2015.12.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.12.017/
[1] Spectral asymmetry and Riemannian geometry III, Math. Proc. Camb. Philos. Soc., Volume 77 (1975), pp. 43-69
[2] Eigenvalue estimates for the Dirac operator with generalized APS boundary condition, J. Geom. Phys., Volume 57 (2007), pp. 379-386
[3] Der erste Eigenwert des Dirac-operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung, Math. Nachr., Volume 97 (1980), pp. 117-146
[4] Dirac Operators in Riemannian Geometry, Graduate Studies in Mathematics, vol. 25, American Mathematical Society, 2000
[5] Complex generalized Killing spinors on Riemannian manifolds, Results Math., Volume 67 (2015) no. 1, pp. 177-195
[6] Generalized Killing spinors and conformal eigenvalue estimates for manifold, Ann. Global Anal. Geom., Volume 17 (1999), pp. 341-370
[7] Eigenvalues of the Dirac operator on manifolds with boundary, Comm. Math. Phys., Volume 221 (2001), pp. 255-265
[8] Eigenvalue boundary problems for the Dirac operator, Comm. Math. Phys., Volume 231 (2002), pp. 375-390
[9] Unicity of constant mean curvature hypersurface in some Riemannian manifolds, Indiana Univ. Math. J., Volume 48 (1999) no. 2, pp. 711-748
[10] Hypersurfaces of manifolds and Lawson type correspondence, Ann. Global Anal. Geom., Volume 42 (2012) no. 3, pp. 421-442
[11] The Dirac operator on hypersurfaces and applications, Differ. Geom. Appl., Volume 31 (2013) no. 1, pp. 93-103
[12] Optimal eigenvalues estimate for the Dirac operator on domains with boundary, Lett. Math. Phys., Volume 73 (2005) no. 2, pp. 135-145
[13] Compact minimal surfaces in the Berger spheres, Ann. Global Anal. Geom., Volume 4 (2012) no. 41, pp. 391-405
Cited by Sources:
Comments - Policy