[Inégalités de continuation unique pour l'équation de Kolmogorov dans l'espace tout entier]
Nous démontrons dans cette Note des inégalités d'observation traduisant la continuation unique pour l'équation de Kolmogorov définie sur l'espace tout entier.
We prove in this Note an observation estimate at one point in time for the Kolmogorov equation in the whole space. Such estimate implies the observability and the null controllability for the Kolmogorov equation with a control region which is sufficiently spread out throughout the whole space.
Accepté le :
Publié le :
Yubiao Zhang 1
@article{CRMATH_2016__354_4_389_0, author = {Yubiao Zhang}, title = {Unique continuation estimates for the {Kolmogorov} equation in the whole space}, journal = {Comptes Rendus. Math\'ematique}, pages = {389--393}, publisher = {Elsevier}, volume = {354}, number = {4}, year = {2016}, doi = {10.1016/j.crma.2016.01.009}, language = {en}, }
Yubiao Zhang. Unique continuation estimates for the Kolmogorov equation in the whole space. Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 389-393. doi : 10.1016/j.crma.2016.01.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.009/
[1] Observability inequalities and measurable sets, J. Eur. Math. Soc., Volume 16 (2014), pp. 2433-2475
[2] The Analysis of Linear Partial Differential Operators, vol. 1, Springer-Verlag, 1990
[3] Null-controllability of the Kolmogorov equation in the whole phase space, J. Differ. Equ., Volume 260 (2016), pp. 3193-3233
[4] Null-controllability of a system of linear thermoelasticity, Arch. Ration. Mech. Anal., Volume 141 (1998), pp. 297-329
[5] Unique continuation estimates for the Laplacian and the heat equation on non-compact manifolds, Math. Res. Lett., Volume 12 (2005), pp. 37-47
[6] An observability estimate for parabolic equations from a measurable set in time and its applications, J. Eur. Math. Soc., Volume 15 (2013), pp. 681-703
- Quantitative uniqueness estimates for stochastic parabolic equations on the whole Euclidean space, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 30 (2024), p. 24 (Id/No 86) | DOI:10.1051/cocv/2024074 | Zbl:7958172
- Geometric conditions for the null-controllability of hypoelliptic quadratic parabolic equations with moving control supports, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 358 (2020) no. 6, pp. 651-700 | DOI:10.5802/crmath.79 | Zbl:1451.93021
- Observability inequalities for the heat equation with bounded potentials on the whole space, SIAM Journal on Control and Optimization, Volume 58 (2020) no. 4, pp. 1939-1960 | DOI:10.1137/19m1296847 | Zbl:1445.35195
- A spectral inequality for degenerate operators and applications, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 356 (2018) no. 11-12, pp. 1131-1155 | DOI:10.1016/j.crma.2018.11.004 | Zbl:1468.93088
- Null-controllability of hypoelliptic quadratic differential equations, Journal de l'École Polytechnique – Mathématiques, Volume 5 (2018), pp. 1-43 | DOI:10.5802/jep.62 | Zbl:1403.93041
- Quantitative unique continuation for the heat equation with Coulomb potentials, Mathematical Control and Related Fields, Volume 8 (2018) no. 3-4, pp. 1097-1116 | DOI:10.3934/mcrf.2018047 | Zbl:1418.35054
- Carleman commutator approach in logarithmic convexity for parabolic equations, Mathematical Control and Related Fields, Volume 8 (2018) no. 3-4, pp. 899-933 | DOI:10.3934/mcrf.2018040 | Zbl:1416.35132
- Null-controllability of non-autonomous Ornstein-Uhlenbeck equations, Journal of Mathematical Analysis and Applications, Volume 456 (2017) no. 1, pp. 496-524 | DOI:10.1016/j.jmaa.2017.07.014 | Zbl:1480.93035
- Null-controllability of the Kolmogorov equation in the whole phase space, Journal of Differential Equations, Volume 260 (2016) no. 4, pp. 3193-3233 | DOI:10.1016/j.jde.2015.09.062 | Zbl:1332.35135
Cité par 9 documents. Sources : zbMATH
Commentaires - Politique