Comptes Rendus
Partial differential equations/Optimal control
Unique continuation estimates for the Kolmogorov equation in the whole space
Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 389-393.

We prove in this Note an observation estimate at one point in time for the Kolmogorov equation in the whole space. Such estimate implies the observability and the null controllability for the Kolmogorov equation with a control region which is sufficiently spread out throughout the whole space.

Nous démontrons dans cette Note des inégalités d'observation traduisant la continuation unique pour l'équation de Kolmogorov définie sur l'espace tout entier.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.01.009

Yubiao Zhang 1

1 School of Mathematics and Statistics, Computational Science Hubei Key Laboratory, Wuhan University, Wuhan, 430072, China
@article{CRMATH_2016__354_4_389_0,
     author = {Yubiao Zhang},
     title = {Unique continuation estimates for the {Kolmogorov} equation in the whole space},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {389--393},
     publisher = {Elsevier},
     volume = {354},
     number = {4},
     year = {2016},
     doi = {10.1016/j.crma.2016.01.009},
     language = {en},
}
TY  - JOUR
AU  - Yubiao Zhang
TI  - Unique continuation estimates for the Kolmogorov equation in the whole space
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 389
EP  - 393
VL  - 354
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2016.01.009
LA  - en
ID  - CRMATH_2016__354_4_389_0
ER  - 
%0 Journal Article
%A Yubiao Zhang
%T Unique continuation estimates for the Kolmogorov equation in the whole space
%J Comptes Rendus. Mathématique
%D 2016
%P 389-393
%V 354
%N 4
%I Elsevier
%R 10.1016/j.crma.2016.01.009
%G en
%F CRMATH_2016__354_4_389_0
Yubiao Zhang. Unique continuation estimates for the Kolmogorov equation in the whole space. Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 389-393. doi : 10.1016/j.crma.2016.01.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.009/

[1] J. Apraiz; L. Escauriaza; G. Wang; C. Zhang Observability inequalities and measurable sets, J. Eur. Math. Soc., Volume 16 (2014), pp. 2433-2475

[2] L. Hörmander The Analysis of Linear Partial Differential Operators, vol. 1, Springer-Verlag, 1990

[3] J. Le Rousseau; I. Moyano Null-controllability of the Kolmogorov equation in the whole phase space, J. Differ. Equ., Volume 260 (2016), pp. 3193-3233

[4] G. Lebeau; E. Zuazua Null-controllability of a system of linear thermoelasticity, Arch. Ration. Mech. Anal., Volume 141 (1998), pp. 297-329

[5] L. Miller Unique continuation estimates for the Laplacian and the heat equation on non-compact manifolds, Math. Res. Lett., Volume 12 (2005), pp. 37-47

[6] K.D. Phung; G. Wang An observability estimate for parabolic equations from a measurable set in time and its applications, J. Eur. Math. Soc., Volume 15 (2013), pp. 681-703

Cited by Sources:

Comments - Policy