Comptes Rendus
Partial differential equations/Optimal control
Unique continuation estimates for the Kolmogorov equation in the whole space
[Inégalités de continuation unique pour l'équation de Kolmogorov dans l'espace tout entier]
Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 389-393.

Nous démontrons dans cette Note des inégalités d'observation traduisant la continuation unique pour l'équation de Kolmogorov définie sur l'espace tout entier.

We prove in this Note an observation estimate at one point in time for the Kolmogorov equation in the whole space. Such estimate implies the observability and the null controllability for the Kolmogorov equation with a control region which is sufficiently spread out throughout the whole space.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2016.01.009

Yubiao Zhang 1

1 School of Mathematics and Statistics, Computational Science Hubei Key Laboratory, Wuhan University, Wuhan, 430072, China
@article{CRMATH_2016__354_4_389_0,
     author = {Yubiao Zhang},
     title = {Unique continuation estimates for the {Kolmogorov} equation in the whole space},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {389--393},
     publisher = {Elsevier},
     volume = {354},
     number = {4},
     year = {2016},
     doi = {10.1016/j.crma.2016.01.009},
     language = {en},
}
TY  - JOUR
AU  - Yubiao Zhang
TI  - Unique continuation estimates for the Kolmogorov equation in the whole space
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 389
EP  - 393
VL  - 354
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2016.01.009
LA  - en
ID  - CRMATH_2016__354_4_389_0
ER  - 
%0 Journal Article
%A Yubiao Zhang
%T Unique continuation estimates for the Kolmogorov equation in the whole space
%J Comptes Rendus. Mathématique
%D 2016
%P 389-393
%V 354
%N 4
%I Elsevier
%R 10.1016/j.crma.2016.01.009
%G en
%F CRMATH_2016__354_4_389_0
Yubiao Zhang. Unique continuation estimates for the Kolmogorov equation in the whole space. Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 389-393. doi : 10.1016/j.crma.2016.01.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.009/

[1] J. Apraiz; L. Escauriaza; G. Wang; C. Zhang Observability inequalities and measurable sets, J. Eur. Math. Soc., Volume 16 (2014), pp. 2433-2475

[2] L. Hörmander The Analysis of Linear Partial Differential Operators, vol. 1, Springer-Verlag, 1990

[3] J. Le Rousseau; I. Moyano Null-controllability of the Kolmogorov equation in the whole phase space, J. Differ. Equ., Volume 260 (2016), pp. 3193-3233

[4] G. Lebeau; E. Zuazua Null-controllability of a system of linear thermoelasticity, Arch. Ration. Mech. Anal., Volume 141 (1998), pp. 297-329

[5] L. Miller Unique continuation estimates for the Laplacian and the heat equation on non-compact manifolds, Math. Res. Lett., Volume 12 (2005), pp. 37-47

[6] K.D. Phung; G. Wang An observability estimate for parabolic equations from a measurable set in time and its applications, J. Eur. Math. Soc., Volume 15 (2013), pp. 681-703

  • Yuanhang Liu; Donghui Yang; Xingwu Zeng; Can Zhang Quantitative uniqueness estimates for stochastic parabolic equations on the whole Euclidean space, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 30 (2024), p. 24 (Id/No 86) | DOI:10.1051/cocv/2024074 | Zbl:7958172
  • Karine Beauchard; Michela Egidi; Karel Pravda-Starov Geometric conditions for the null-controllability of hypoelliptic quadratic parabolic equations with moving control supports, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 358 (2020) no. 6, pp. 651-700 | DOI:10.5802/crmath.79 | Zbl:1451.93021
  • Yueliang Duan; Lijuan Wang; Can Zhang Observability inequalities for the heat equation with bounded potentials on the whole space, SIAM Journal on Control and Optimization, Volume 58 (2020) no. 4, pp. 1939-1960 | DOI:10.1137/19m1296847 | Zbl:1445.35195
  • Rémi Buffe; Kim Dang Phung A spectral inequality for degenerate operators and applications, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 356 (2018) no. 11-12, pp. 1131-1155 | DOI:10.1016/j.crma.2018.11.004 | Zbl:1468.93088
  • Karine Beauchard; Karel Pravda-Starov Null-controllability of hypoelliptic quadratic differential equations, Journal de l'École Polytechnique – Mathématiques, Volume 5 (2018), pp. 1-43 | DOI:10.5802/jep.62 | Zbl:1403.93041
  • Can Zhang Quantitative unique continuation for the heat equation with Coulomb potentials, Mathematical Control and Related Fields, Volume 8 (2018) no. 3-4, pp. 1097-1116 | DOI:10.3934/mcrf.2018047 | Zbl:1418.35054
  • Kim Dang Phung Carleman commutator approach in logarithmic convexity for parabolic equations, Mathematical Control and Related Fields, Volume 8 (2018) no. 3-4, pp. 899-933 | DOI:10.3934/mcrf.2018040 | Zbl:1416.35132
  • Karine Beauchard; Karel Pravda-Starov Null-controllability of non-autonomous Ornstein-Uhlenbeck equations, Journal of Mathematical Analysis and Applications, Volume 456 (2017) no. 1, pp. 496-524 | DOI:10.1016/j.jmaa.2017.07.014 | Zbl:1480.93035
  • Jérôme Le Rousseau; Iván Moyano Null-controllability of the Kolmogorov equation in the whole phase space, Journal of Differential Equations, Volume 260 (2016) no. 4, pp. 3193-3233 | DOI:10.1016/j.jde.2015.09.062 | Zbl:1332.35135

Cité par 9 documents. Sources : zbMATH

Commentaires - Politique