We prove in this Note an observation estimate at one point in time for the Kolmogorov equation in the whole space. Such estimate implies the observability and the null controllability for the Kolmogorov equation with a control region which is sufficiently spread out throughout the whole space.
Nous démontrons dans cette Note des inégalités d'observation traduisant la continuation unique pour l'équation de Kolmogorov définie sur l'espace tout entier.
Accepted:
Published online:
Yubiao Zhang 1
@article{CRMATH_2016__354_4_389_0, author = {Yubiao Zhang}, title = {Unique continuation estimates for the {Kolmogorov} equation in the whole space}, journal = {Comptes Rendus. Math\'ematique}, pages = {389--393}, publisher = {Elsevier}, volume = {354}, number = {4}, year = {2016}, doi = {10.1016/j.crma.2016.01.009}, language = {en}, }
Yubiao Zhang. Unique continuation estimates for the Kolmogorov equation in the whole space. Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 389-393. doi : 10.1016/j.crma.2016.01.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.009/
[1] Observability inequalities and measurable sets, J. Eur. Math. Soc., Volume 16 (2014), pp. 2433-2475
[2] The Analysis of Linear Partial Differential Operators, vol. 1, Springer-Verlag, 1990
[3] Null-controllability of the Kolmogorov equation in the whole phase space, J. Differ. Equ., Volume 260 (2016), pp. 3193-3233
[4] Null-controllability of a system of linear thermoelasticity, Arch. Ration. Mech. Anal., Volume 141 (1998), pp. 297-329
[5] Unique continuation estimates for the Laplacian and the heat equation on non-compact manifolds, Math. Res. Lett., Volume 12 (2005), pp. 37-47
[6] An observability estimate for parabolic equations from a measurable set in time and its applications, J. Eur. Math. Soc., Volume 15 (2013), pp. 681-703
Cited by Sources:
Comments - Policy