The purpose of this note is to construct a Dirichlet-to-Neumann operator for the diffraction problem in stratified anisotropic acoustic waveguides. The key idea consists in using an adapted change of coordinates that enables to recover the completeness and the orthogonality of the modes on “deformed” cross-sections of the waveguide.
Le but de cette note est de construire un opérateur Dirichlet-to-Neumann pour le problème de diffraction dans un guide d'ondes acoustique anisotrope stratifié. Le point clé consiste à utiliser un changement de coordonnées adapté qui permet de retrouver à la fois des propriétés de complétude et d'orthogonalité des modes sur une section « déformée » du guide d'ondes.
Accepted:
Published online:
Antoine Tonnoir 1, 2
@article{CRMATH_2016__354_4_383_0, author = {Antoine Tonnoir}, title = {Dirichlet-to-Neumann operator for diffraction problems in stratified anisotropic acoustic waveguides}, journal = {Comptes Rendus. Math\'ematique}, pages = {383--387}, publisher = {Elsevier}, volume = {354}, number = {4}, year = {2016}, doi = {10.1016/j.crma.2015.12.018}, language = {en}, }
TY - JOUR AU - Antoine Tonnoir TI - Dirichlet-to-Neumann operator for diffraction problems in stratified anisotropic acoustic waveguides JO - Comptes Rendus. Mathématique PY - 2016 SP - 383 EP - 387 VL - 354 IS - 4 PB - Elsevier DO - 10.1016/j.crma.2015.12.018 LA - en ID - CRMATH_2016__354_4_383_0 ER -
Antoine Tonnoir. Dirichlet-to-Neumann operator for diffraction problems in stratified anisotropic acoustic waveguides. Comptes Rendus. Mathématique, Volume 354 (2016) no. 4, pp. 383-387. doi : 10.1016/j.crma.2015.12.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.12.018/
[1] Experimental realization of a water-wave metamaterial shifter, Physical Review E, Volume 88 (2013) no. 5
[2] An alternative to the Dirichlet-to-Neumann maps for waveguides, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 17–18, pp. 1005-1009
[3] Acoustic cloaking and transformation acoustics, J. Phys., Volume 43 (2010) no. 11
[4] Numerical Method for Problems in Infinite Domains, Elsevier Science, Amsterdam, 1992
[5] A finite element method for solving Helmholtz type equations in waveguides and other unbounded domains, Math. Comput., Volume 39 (1982) no. 160, pp. 309-324
Cited by Sources:
Comments - Policy