We compute the density of the set of ordinary primes of an Abelian surface over a number field in terms of the ℓ-adic monodromy group.
On étudie la densité de l'ensemble des places ordinaires pour une surface abélienne sur un corps de nombres, en se servant du groupe de monodromie ℓ-adique.
Accepted:
Published online:
William F. Sawin 1
@article{CRMATH_2016__354_6_566_0, author = {William F. Sawin}, title = {Ordinary primes for {Abelian} surfaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {566--568}, publisher = {Elsevier}, volume = {354}, number = {6}, year = {2016}, doi = {10.1016/j.crma.2016.01.025}, language = {en}, }
William F. Sawin. Ordinary primes for Abelian surfaces. Comptes Rendus. Mathématique, Volume 354 (2016) no. 6, pp. 566-568. doi : 10.1016/j.crma.2016.01.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.025/
[1] Lie Groups and Lie Algebras III, Springer, 1975
[2] Variétés abéliennes ordinaires sur un corps fini, Invent. Math., Volume 8 (1969), pp. 238-243
[3] Finiteness theorems for Abelian varieties over number fields (G. Cornell; J.H. Silverman, eds.), Arithmetic Geometry, Springer-Verlag, 1986, pp. 9-26
[4] Sato–Tate distributions and Galois endomorphism modules in genus 2, Compos. Math., Volume 148 (2012), pp. 1390-1442
[5] Hodge cycles and crystalline cohomology, Hodge Cycles, Motives, and Shimura Varieties, Springer Lecture Notes in Mathematics, vol. 900, Springer-Verlag, 1982, pp. 357-414
[6] ℓ-adic algebraic monodromy groups, cocharacters, and the Mumford–Tate conjecture, J. Reine Angew. Math., Volume 495 (1998), pp. 187-237
[7] Représentations ℓ-adiques, Kyoto Symposium on Algebraic Number Theory, Japan Society for the Promotion of Science, 1977, pp. 177-193
[8] Lectures on , Research Notes in Mathematics, A K Peters/CRC Press, 2011
Cited by Sources:
Comments - Policy