It is well known that the sequence of powers of a Salem number θ, modulo 1, is dense in the unit interval, but is not uniformly distributed. Generalizing a result of Dupain, we determine, explicitly, the repartition function of the sequence , where P is a polynomial with integer coefficients and θ is quartic. Also, we consider some examples to illustrate the method of determination.
Il est bien connu que la suite des puissances d'un nombre de Salem θ, modulo 1, est dense dans l'intervalle unité, sans être uniformément distribuée. Généralisant un résultat de Dupain, on détermine explicitement la fonction de répartition de la suite , où P est un polynôme à coefficients entiers et θ est quartique. On illustre également la méthode de détermination par quelques exemples.
Accepted:
Published online:
Dragan Stankov 1
@article{CRMATH_2016__354_6_569_0, author = {Dragan Stankov}, title = {On the distribution modulo 1 of the sum of powers of a {Salem} number}, journal = {Comptes Rendus. Math\'ematique}, pages = {569--576}, publisher = {Elsevier}, volume = {354}, number = {6}, year = {2016}, doi = {10.1016/j.crma.2016.03.012}, language = {en}, }
Dragan Stankov. On the distribution modulo 1 of the sum of powers of a Salem number. Comptes Rendus. Mathématique, Volume 354 (2016) no. 6, pp. 569-576. doi : 10.1016/j.crma.2016.03.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.03.012/
[1] Salem numbers and uniform distribution modulo 1, Publ. Math. (Debr.), Volume 64 (2004) no. 3–4, pp. 329-341
[2] Pisot and Salem Numbers, Birkhäuser, Basel, Switzerland, 1992
[3] Distribution Modulo One and Diophantine Approximation, Cambridge Tracts in Mathematics, vol. 193, Cambridge University Press, Cambridge, UK, 2012
[4] Equidistribution modulo 1 and Salem numbers, Funct. Approx. Comment. Math., Volume 39 (2008) no. 2, pp. 261-271
[5] Répartition et discrépance, Université Bordeaux-1, 1978 (PhD thesis)
[6] Chebyshev Polynomials, Chapman and Hall/CRC, Boca Raton, London, New York, Washington D.C., 2003
[7] Power series with integral coefficients, Duke Math. J., Volume 12 (1945), pp. 153-172
[8] Seventy years of Salem numbers, Bull. Lond. Math. Soc., Volume 47 (2015) no. 3, pp. 379-395
Cited by Sources:
Comments - Policy