A maximum principle is established for minimal solutions to the system , with a potential W vanishing at the boundary of a closed convex set , which is either smooth or coincides with a point .
Nous établissons un principe du maximum pour les solutions minimales du système , dont le potentiel W s'annule à la frontière d'un ensemble fermé convexe , de classe ou réduit à un point .
Accepted:
Published online:
Panagiotis Antonopoulos 1; Panayotis Smyrnelis 2
@article{CRMATH_2016__354_6_595_0, author = {Panagiotis Antonopoulos and Panayotis Smyrnelis}, title = {A maximum principle for the system {\ensuremath{\Delta}\protect\emph{u}\,\ensuremath{-}\,\ensuremath{\nabla}\protect\emph{W}(\protect\emph{u})=0}}, journal = {Comptes Rendus. Math\'ematique}, pages = {595--600}, publisher = {Elsevier}, volume = {354}, number = {6}, year = {2016}, doi = {10.1016/j.crma.2016.03.015}, language = {en}, }
Panagiotis Antonopoulos; Panayotis Smyrnelis. A maximum principle for the system Δu − ∇W(u)=0. Comptes Rendus. Mathématique, Volume 354 (2016) no. 6, pp. 595-600. doi : 10.1016/j.crma.2016.03.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.03.015/
[1] A maximum principle for systems with variational structure and an application to standing waves, J. Eur. Math. Soc., Volume 17 (2015) no. 7, pp. 1547-1567
[2] Minimal interface criterion for phase transitions in mixtures of Cahn–Hilliard fluids, Ann. Inst. Henri Poincaré, Volume 7 (1990) no. 2, pp. 67-90
[3] Local minimizers and planar interfaces in a phase-transition model with interfacial energy, Calc. Var. Partial Differ. Equ., Volume 40 (2011) no. 3–4, pp. 501-538
[4] Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer-Verlag, New York, 2011
[5] Instability results for reaction-diffusion equations with Neumann boundary conditions, J. Differ. Equ., Volume 27 (1978), pp. 266-273
[6] A strong maximum principle for parabolic systems in a convex set with arbitrary boundary, Proc. Amer. Math. Soc., Volume 138 (2010) no. 9, pp. 3179-3185
[7] Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, 2010
[8] Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL, USA, 1992
[9] Local minimisers and singular perturbations, Proc. R. Soc. Edinb., Sect. A, Volume 111 (1989) no. 1–2, pp. 69-84
[10] Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci., Volume 15 (1979) no. 2, pp. 401-454
[11] Un esempio di Γ-convergenza, Boll. Unione Mat. Ital., B, Volume 14 (1977) no. 1, pp. 285-299
[12] Invariant sets for weakly coupled parabolic and elliptic systems, Rend. Mat. Ser. VI, Volume 8 (1975), pp. 295-310
[13] Some remarks on invariant sets for systems (P.W. Schaefer, ed.), Maximum Principles and Eigenvalue Problems in Partial Differential Equations, Pitman Research Notes in Mathematics, vol. 175, Longman, 1988, pp. 189-207
Cited by Sources:
Comments - Policy