[Amélioration du théorème de Pellet pour polynômes scalaires et matriciels]
Nous améliorons le théorème de Pellet pour les polynômes scalaires et matriciels en utilisant des multiplicateurs polynomiaux.
We improve Pellet's theorem for both scalar and matrix polynomials by using polynomial multipliers.
Accepté le :
Publié le :
Aaron Melman 1
@article{CRMATH_2016__354_8_859_0, author = {Aaron Melman}, title = {Improvement of {Pellet's} theorem for scalar and matrix polynomials}, journal = {Comptes Rendus. Math\'ematique}, pages = {859--863}, publisher = {Elsevier}, volume = {354}, number = {8}, year = {2016}, doi = {10.1016/j.crma.2016.04.006}, language = {en}, }
Aaron Melman. Improvement of Pellet's theorem for scalar and matrix polynomials. Comptes Rendus. Mathématique, Volume 354 (2016) no. 8, pp. 859-863. doi : 10.1016/j.crma.2016.04.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.04.006/
[1] Locating the eigenvalues of matrix polynomials, SIAM J. Matrix Anal. Appl., Volume 34 (2013), pp. 1708-1727
[2] , Exercices de mathématiques, Quatrième année (Œuvres complètes, Série 2), Volume Tome 9, de Bure frères, Paris (1829), pp. 65-128 (Also in:, 1891, Gauthier-Villars et fils, Paris, pp. 86-161)
[3] Bounds for eigenvalues of matrix polynomials, Linear Algebra Appl., Volume 358 (2003), pp. 5-22
[4] Matrix Analysis, Cambridge University Press, Cambridge, UK, 2013
[5] Geometry of Polynomials, Mathematical Surveys, vol. 3, American Mathematical Society, Providence, RI, USA, 1966
[6] Generalization and variations of Pellet's theorem for matrix polynomials, Linear Algebra Appl., Volume 439 (2013), pp. 1550-1567
[7] Implementation of Pellet's theorem, Numer. Algorithms, Volume 65 (2014), pp. 293-304
[8] Sur un mode de séparation des racines des équations et la formule de Lagrange, Bull. Sci. Math., Volume 5 (1881), pp. 393-395
[9] Analytic Theory of Polynomials, London Mathematical Society Monographs. New Series, vol. 26, The Clarendon Press, Oxford University Press, Oxford, UK, 2002
- Matrices whose eigenvalues are those of a quadratic matrix polynomial, Linear Algebra and its Applications, Volume 676 (2023), pp. 131-149 | DOI:10.1016/j.laa.2023.06.025 | Zbl:1523.15008
- Polynomial eigenvalue estimation: numerical radii versus norms, Linear and Multilinear Algebra, Volume 70 (2022) no. 22, pp. 7656-7671 | DOI:10.1080/03081087.2021.2003286 | Zbl:1514.15026
- Directional bounds for polynomial zeros and eigenvalues, Journal of Mathematical Analysis and Applications, Volume 482 (2020) no. 2, p. 11 (Id/No 123571) | DOI:10.1016/j.jmaa.2019.123571 | Zbl:1430.30002
- Refinement of Pellet radii for matrix polynomials, Linear and Multilinear Algebra, Volume 68 (2020) no. 11, pp. 2185-2200 | DOI:10.1080/03081087.2019.1573212 | Zbl:1452.30007
- An alternative proof of Pellet's theorem for matrix polynomials, Linear and Multilinear Algebra, Volume 66 (2018) no. 4, pp. 785-791 | DOI:10.1080/03081087.2017.1322549 | Zbl:1386.15026
Cité par 5 documents. Sources : zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier