Comptes Rendus
Statistics
Nonparametric trigonometric orthogonal regression estimation
Comptes Rendus. Mathématique, Volume 354 (2016) no. 8, pp. 851-858.

Eubank, Hart, and Speckman (1990) [2] have investigated the nonparametric trigonometric regression estimator. They assumed that the observation xi points satisfy axiψ(s)ds=(1+i)n, i=1,...,n, where ψL1[a,b] is a density satisfying certain smoothness conditions, and in a work by E. Rafajłowicz (1987) [3], the observation points coincide with knots of numerical quadratures. The aim of the present work is to introduce a new estimator of the regression function based on trigonometric series, for fixed point designs different from the ones considered so far, under milder restrictions on the observation points. This seems to be important since it may be numerically difficult to determine exactly the points xi satisfying the recent condition or the knots of appropriate numerical quadratures, especially when their number is large.

Eubank, Hart et Speckman (1990) [2] ont étudié l'estimation non paramétrique de la fonction de régression par des séries trigonométriques. Ils ont supposé que les observations xi satisfont la condition axiψ(s)ds=(1+i)n, i=1,...,n, où ψL1[a,b] est une densité vérifiant certaines conditions de régularité. Dans un travail de Rafajłowicz (1987) [3], les observations coincident avec les nœuds des fonctions numériques quadratiques. Ce travail a pour objectif d'introduire un nouvel estimateur de la fonction de régression basé sur un système trigonométrique. On supposera que les observations sont prises en des points équidistants, car il est difficile de déterminer numériquement avec précision les points xi satisfaisant aux précédentes conditions, spécialement quand le nombre d'observations est grand.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.02.013

Nora Saadi 1; Smail Adjabi 1

1 LAMOS Laboratory, University of Bejaia, Algeria
@article{CRMATH_2016__354_8_851_0,
     author = {Nora Saadi and Smail Adjabi},
     title = {Nonparametric trigonometric orthogonal regression estimation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {851--858},
     publisher = {Elsevier},
     volume = {354},
     number = {8},
     year = {2016},
     doi = {10.1016/j.crma.2016.02.013},
     language = {en},
}
TY  - JOUR
AU  - Nora Saadi
AU  - Smail Adjabi
TI  - Nonparametric trigonometric orthogonal regression estimation
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 851
EP  - 858
VL  - 354
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crma.2016.02.013
LA  - en
ID  - CRMATH_2016__354_8_851_0
ER  - 
%0 Journal Article
%A Nora Saadi
%A Smail Adjabi
%T Nonparametric trigonometric orthogonal regression estimation
%J Comptes Rendus. Mathématique
%D 2016
%P 851-858
%V 354
%N 8
%I Elsevier
%R 10.1016/j.crma.2016.02.013
%G en
%F CRMATH_2016__354_8_851_0
Nora Saadi; Smail Adjabi. Nonparametric trigonometric orthogonal regression estimation. Comptes Rendus. Mathématique, Volume 354 (2016) no. 8, pp. 851-858. doi : 10.1016/j.crma.2016.02.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.02.013/

[1] J. Engel A simple wavelet approach to nonparametric regression from recursive partitioning schemes, J. Multivar. Anal., Volume 49 (1994), pp. 242-254

[2] R.L. Eubank; J.D. Hart; P. Speckman Trigonometric series regression estimators with an application to partially linear models, J. Multivar. Anal., Volume 32 (1990), pp. 70-83

[3] E. Rafajłowicz Nonparametric orthogonal series estimators of regression: a class attaining the optimal convergence rate in L2, Stat. Probab. Lett., Volume 5 (1987), pp. 219-224

[4] E. Rafajłowicz Nonparametric least-squares estimation of a regression function, Statistics, Volume 19 (1988), pp. 349-358

[5] L. Rutkowski Orthogonal series estimates of a regression function with application in system identification (W. Grossmann; G.C. Pflug; W. Wertz, eds.), Probability and Statistical Inference, Reidel, Dordrecht, The Netherlands, 1982, pp. 343-347

[6] N. Saadi; S. Adjabi On the estimation of the probability density by trigonometric series, Commun. Stat., Theory Methods, Volume 38 (2009), pp. 3583-3595

[7] I.I. Sharapudinov On convergence of least-squares estimators, Mat. Zametki, Volume 53 (1993), pp. 131-143 (in Russian)

Cited by Sources:

Comments - Policy