In this paper we establish the – boundedness of Fourier multipliers on locally compact separable unimodular groups for the range of indices . Our approach is based on the operator algebras techniques. The result depends on a version of the Hausdorff–Young–Paley inequality that we establish on general locally compact separable unimodular groups. In particular, the obtained result implies the corresponding Hörmander's Fourier multiplier theorem on and the corresponding known results for Fourier multipliers on compact Lie groups.
Dans cette note, nous établissons des – bornitudes de multiplicateurs de Fourier sur les groupes unimodulaires localement compacts pour . Notre approche est basée sur la technique des algèbres des opérateurs. Pour cela, nous prouvons une version de l'inégalité de Hausdorff–Young sur les groupes unimodulaires localement compacts. En particulier, le résultat obtenu implique le théorème de Hörmander sur les multiplicateurs de Fourier dans et des résultats déjà connus associés aux multiplicateurs de Fourier sur les groupes de Lie compacts.
Accepted:
Published online:
Rauan Akylzhanov 1; Michael Ruzhansky 1
@article{CRMATH_2016__354_8_766_0, author = {Rauan Akylzhanov and Michael Ruzhansky}, title = {Fourier multipliers and group von {Neumann} algebras}, journal = {Comptes Rendus. Math\'ematique}, pages = {766--770}, publisher = {Elsevier}, volume = {354}, number = {8}, year = {2016}, doi = {10.1016/j.crma.2016.05.010}, language = {en}, }
Rauan Akylzhanov; Michael Ruzhansky. Fourier multipliers and group von Neumann algebras. Comptes Rendus. Mathématique, Volume 354 (2016) no. 8, pp. 766-770. doi : 10.1016/j.crma.2016.05.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.05.010/
[1] Hausdorff–Young–Paley inequalities and – Fourier multipliers on locally compact groups, 2016 | arXiv
[2] Hardy–Littlewood, Hausdorff–Young–Paley inequalities, and – multipliers on compact homogeneous manifolds, 2015 | arXiv
[3] Hardy–Littlewood inequalities and Fourier multipliers on SU(2), Stud. Math. (2016) (in press)
[4] Analyse harmonique non-commutative sur certains espaces homogènes, Springer-Verlag, Berlin, 1971
[5] Von Neumann Algebras, North-Holland Pub. Co., Amsterdam, New York, 1981
[6] Generalized s-numbers of τ-measurable operators, Pac. J. Math., Volume 123 (1986) no. 2, pp. 269-300
[7] Fourier multipliers on graded Lie groups, 2014 | arXiv
[8] Quantization on Nilpotent Lie Groups, Prog. Math., vol. 314, Birkhäuser, 2016
[9] Sub-Laplacian eigenvalue bounds on sub-Riemannian manifolds, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (2016) (in press)
[10] Estimates for translation invariant operators in spaces, Acta Math., Volume 104 (1960), pp. 93-140
[11] Non-commutative Lorentz spaces associated with a semifinite Von Neumann algebra and applications, Proc. Jpn. Acad., Ser. A, Math. Sci., Volume 57 (1981) no. 6, pp. 303-306
[12] Fourier transforms on locally compact unimodular groups, Trans. Amer. Math. Soc., Volume 89 (1958), pp. 519-540
[13] Pseudo-differential operators, Wigner transform and Weyl systems on type I locally compact groups, 2015 | arXiv
[14] Fonction spectrale et valeurs propres d'une classe d'opérateurs non elliptiques, Commun. Partial Differ. Equ., Volume 1 (1976) no. 5, pp. 467-519
[15] Pseudo-Differential Operators and Symmetries, Birkhäuser Verlag, Basel, 2010
[16] Global quantization of pseudo-differential operators on compact Lie groups, , 3-sphere, and homogeneous spaces, Int. Math. Res. Not., Volume 11 (2013), pp. 2439-2496
[17] Fourier multipliers on compact Lie groups, Math. Z., Volume 280 (2015) no. 3–4, pp. 621-642
[18] An extension of Plancherel's formula to separable unimodular groups, Ann. of Math., Volume 52 (1950), pp. 272-292
[19] A non-commutative extension of abstract integration, Ann. of Math., Volume 57 (1953) no. 3, pp. 401-457
Cited by Sources:
☆ The second author was supported by the Leverhulme Research Grant RPG-2014-02 and by the EPSRC Grant EP/K039407/1. No new data was collected or generated during the course of the research.
Comments - Policy