[Multiplicateurs de Fourier et algèbres de von Neumann]
Dans cette note, nous établissons des
In this paper we establish the
Accepté le :
Publié le :
Rauan Akylzhanov 1 ; Michael Ruzhansky 1
@article{CRMATH_2016__354_8_766_0, author = {Rauan Akylzhanov and Michael Ruzhansky}, title = {Fourier multipliers and group von {Neumann} algebras}, journal = {Comptes Rendus. Math\'ematique}, pages = {766--770}, publisher = {Elsevier}, volume = {354}, number = {8}, year = {2016}, doi = {10.1016/j.crma.2016.05.010}, language = {en}, }
Rauan Akylzhanov; Michael Ruzhansky. Fourier multipliers and group von Neumann algebras. Comptes Rendus. Mathématique, Volume 354 (2016) no. 8, pp. 766-770. doi : 10.1016/j.crma.2016.05.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.05.010/
[1] Hausdorff–Young–Paley inequalities and
[2] Hardy–Littlewood, Hausdorff–Young–Paley inequalities, and
[3] Hardy–Littlewood inequalities and Fourier multipliers on SU(2), Stud. Math. (2016) (in press)
[4] Analyse harmonique non-commutative sur certains espaces homogènes, Springer-Verlag, Berlin, 1971
[5] Von Neumann Algebras, North-Holland Pub. Co., Amsterdam, New York, 1981
[6] Generalized s-numbers of τ-measurable operators, Pac. J. Math., Volume 123 (1986) no. 2, pp. 269-300
[7] Fourier multipliers on graded Lie groups, 2014 | arXiv
[8] Quantization on Nilpotent Lie Groups, Prog. Math., vol. 314, Birkhäuser, 2016
[9] Sub-Laplacian eigenvalue bounds on sub-Riemannian manifolds, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (2016) (in press)
[10] Estimates for translation invariant operators in
[11] Non-commutative Lorentz spaces associated with a semifinite Von Neumann algebra and applications, Proc. Jpn. Acad., Ser. A, Math. Sci., Volume 57 (1981) no. 6, pp. 303-306
[12]
[13] Pseudo-differential operators, Wigner transform and Weyl systems on type I locally compact groups, 2015 | arXiv
[14] Fonction spectrale et valeurs propres d'une classe d'opérateurs non elliptiques, Commun. Partial Differ. Equ., Volume 1 (1976) no. 5, pp. 467-519
[15] Pseudo-Differential Operators and Symmetries, Birkhäuser Verlag, Basel, 2010
[16] Global quantization of pseudo-differential operators on compact Lie groups,
[17]
[18] An extension of Plancherel's formula to separable unimodular groups, Ann. of Math., Volume 52 (1950), pp. 272-292
[19] A non-commutative extension of abstract integration, Ann. of Math., Volume 57 (1953) no. 3, pp. 401-457
- Lp-Lq Fourier Multipliers on Locally Compact Quantum Groups, Journal of Fourier Analysis and Applications, Volume 29 (2023) no. 4 | DOI:10.1007/s00041-023-10029-z
- Hausdorff–Young inequality for Orlicz spaces on compact homogeneous manifolds, Indagationes Mathematicae, Volume 31 (2020) no. 2, p. 266 | DOI:10.1016/j.indag.2020.01.004
- L-L multipliers on locally compact groups, Journal of Functional Analysis, Volume 278 (2020) no. 3, p. 108324 | DOI:10.1016/j.jfa.2019.108324
- Smooth Dense Subalgebras and Fourier Multipliers on Compact Quantum Groups, Communications in Mathematical Physics, Volume 362 (2018) no. 3, pp. 761-799 | DOI:10.1007/s00220-018-3219-4
- Besov continuity for pseudo-differential operators on compact homogeneous manifolds, Journal of Pseudo-Differential Operators and Applications, Volume 9 (2018) no. 4, p. 861 | DOI:10.1007/s11868-017-0226-8
Cité par 5 documents. Sources : Crossref, NASA ADS
☆ The second author was supported by the Leverhulme Research Grant RPG-2014-02 and by the EPSRC Grant EP/K039407/1. No new data was collected or generated during the course of the research.
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier