Comptes Rendus
Mathematical analysis/Harmonic analysis
Fourier multipliers and group von Neumann algebras
Comptes Rendus. Mathématique, Volume 354 (2016) no. 8, pp. 766-770.

In this paper we establish the LpLq boundedness of Fourier multipliers on locally compact separable unimodular groups for the range of indices 1<p2q<. Our approach is based on the operator algebras techniques. The result depends on a version of the Hausdorff–Young–Paley inequality that we establish on general locally compact separable unimodular groups. In particular, the obtained result implies the corresponding Hörmander's Fourier multiplier theorem on Rn and the corresponding known results for Fourier multipliers on compact Lie groups.

Dans cette note, nous établissons des LpLq bornitudes de multiplicateurs de Fourier sur les groupes unimodulaires localement compacts pour 1<p2q<. Notre approche est basée sur la technique des algèbres des opérateurs. Pour cela, nous prouvons une version de l'inégalité de Hausdorff–Young sur les groupes unimodulaires localement compacts. En particulier, le résultat obtenu implique le théorème de Hörmander sur les multiplicateurs de Fourier dans Rn et des résultats déjà connus associés aux multiplicateurs de Fourier sur les groupes de Lie compacts.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.05.010

Rauan Akylzhanov 1; Michael Ruzhansky 1

1 Department of Mathematics, Imperial College London, 180 Queen's Gate, London SW7 2AZ, United Kingdom
@article{CRMATH_2016__354_8_766_0,
     author = {Rauan Akylzhanov and Michael Ruzhansky},
     title = {Fourier multipliers and group von {Neumann} algebras},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {766--770},
     publisher = {Elsevier},
     volume = {354},
     number = {8},
     year = {2016},
     doi = {10.1016/j.crma.2016.05.010},
     language = {en},
}
TY  - JOUR
AU  - Rauan Akylzhanov
AU  - Michael Ruzhansky
TI  - Fourier multipliers and group von Neumann algebras
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 766
EP  - 770
VL  - 354
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crma.2016.05.010
LA  - en
ID  - CRMATH_2016__354_8_766_0
ER  - 
%0 Journal Article
%A Rauan Akylzhanov
%A Michael Ruzhansky
%T Fourier multipliers and group von Neumann algebras
%J Comptes Rendus. Mathématique
%D 2016
%P 766-770
%V 354
%N 8
%I Elsevier
%R 10.1016/j.crma.2016.05.010
%G en
%F CRMATH_2016__354_8_766_0
Rauan Akylzhanov; Michael Ruzhansky. Fourier multipliers and group von Neumann algebras. Comptes Rendus. Mathématique, Volume 354 (2016) no. 8, pp. 766-770. doi : 10.1016/j.crma.2016.05.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.05.010/

[1] R. Akylzhanov; M. Ruzhansky Hausdorff–Young–Paley inequalities and LpLq Fourier multipliers on locally compact groups, 2016 | arXiv

[2] R. Akylzhanov; E. Nursultanov; M. Ruzhansky Hardy–Littlewood, Hausdorff–Young–Paley inequalities, and LpLq multipliers on compact homogeneous manifolds, 2015 | arXiv

[3] R. Akylzhanov; E. Nursultanov; M. Ruzhansky Hardy–Littlewood inequalities and Fourier multipliers on SU(2), Stud. Math. (2016) (in press)

[4] R.R. Coifman; G. Weiss Analyse harmonique non-commutative sur certains espaces homogènes, Springer-Verlag, Berlin, 1971

[5] J. Dixmier Von Neumann Algebras, North-Holland Pub. Co., Amsterdam, New York, 1981

[6] T. Fack; H. Kosaki Generalized s-numbers of τ-measurable operators, Pac. J. Math., Volume 123 (1986) no. 2, pp. 269-300

[7] V. Fischer; M. Ruzhansky Fourier multipliers on graded Lie groups, 2014 | arXiv

[8] V. Fischer; M. Ruzhansky Quantization on Nilpotent Lie Groups, Prog. Math., vol. 314, Birkhäuser, 2016

[9] A. Hassannezhad; G. Kokarev Sub-Laplacian eigenvalue bounds on sub-Riemannian manifolds, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (2016) (in press)

[10] L. Hörmander Estimates for translation invariant operators in Lp spaces, Acta Math., Volume 104 (1960), pp. 93-140

[11] H. Kosaki Non-commutative Lorentz spaces associated with a semifinite Von Neumann algebra and applications, Proc. Jpn. Acad., Ser. A, Math. Sci., Volume 57 (1981) no. 6, pp. 303-306

[12] R.A. Kunze Lp Fourier transforms on locally compact unimodular groups, Trans. Amer. Math. Soc., Volume 89 (1958), pp. 519-540

[13] M. Mantoiu; M. Ruzhansky Pseudo-differential operators, Wigner transform and Weyl systems on type I locally compact groups, 2015 | arXiv

[14] G. Mêtivier Fonction spectrale et valeurs propres d'une classe d'opérateurs non elliptiques, Commun. Partial Differ. Equ., Volume 1 (1976) no. 5, pp. 467-519

[15] M. Ruzhansky; V. Turunen Pseudo-Differential Operators and Symmetries, Birkhäuser Verlag, Basel, 2010

[16] M. Ruzhansky; V. Turunen Global quantization of pseudo-differential operators on compact Lie groups, SU(2), 3-sphere, and homogeneous spaces, Int. Math. Res. Not., Volume 11 (2013), pp. 2439-2496

[17] M. Ruzhansky; J. Wirth Lp Fourier multipliers on compact Lie groups, Math. Z., Volume 280 (2015) no. 3–4, pp. 621-642

[18] I.E. Segal An extension of Plancherel's formula to separable unimodular groups, Ann. of Math., Volume 52 (1950), pp. 272-292

[19] I.E. Segal A non-commutative extension of abstract integration, Ann. of Math., Volume 57 (1953) no. 3, pp. 401-457

Cited by Sources:

The second author was supported by the Leverhulme Research Grant RPG-2014-02 and by the EPSRC Grant EP/K039407/1. No new data was collected or generated during the course of the research.

Comments - Policy