[Multiplicateurs de Fourier et algèbres de von Neumann]
Dans cette note, nous établissons des
In this paper we establish the
Accepté le :
Publié le :
Rauan Akylzhanov 1 ; Michael Ruzhansky 1
@article{CRMATH_2016__354_8_766_0, author = {Rauan Akylzhanov and Michael Ruzhansky}, title = {Fourier multipliers and group von {Neumann} algebras}, journal = {Comptes Rendus. Math\'ematique}, pages = {766--770}, publisher = {Elsevier}, volume = {354}, number = {8}, year = {2016}, doi = {10.1016/j.crma.2016.05.010}, language = {en}, }
Rauan Akylzhanov; Michael Ruzhansky. Fourier multipliers and group von Neumann algebras. Comptes Rendus. Mathématique, Volume 354 (2016) no. 8, pp. 766-770. doi : 10.1016/j.crma.2016.05.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.05.010/
[1] Hausdorff–Young–Paley inequalities and
[2] Hardy–Littlewood, Hausdorff–Young–Paley inequalities, and
[3] Hardy–Littlewood inequalities and Fourier multipliers on SU(2), Stud. Math. (2016) (in press)
[4] Analyse harmonique non-commutative sur certains espaces homogènes, Springer-Verlag, Berlin, 1971
[5] Von Neumann Algebras, North-Holland Pub. Co., Amsterdam, New York, 1981
[6] Generalized s-numbers of τ-measurable operators, Pac. J. Math., Volume 123 (1986) no. 2, pp. 269-300
[7] Fourier multipliers on graded Lie groups, 2014 | arXiv
[8] Quantization on Nilpotent Lie Groups, Prog. Math., vol. 314, Birkhäuser, 2016
[9] Sub-Laplacian eigenvalue bounds on sub-Riemannian manifolds, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (2016) (in press)
[10] Estimates for translation invariant operators in
[11] Non-commutative Lorentz spaces associated with a semifinite Von Neumann algebra and applications, Proc. Jpn. Acad., Ser. A, Math. Sci., Volume 57 (1981) no. 6, pp. 303-306
[12]
[13] Pseudo-differential operators, Wigner transform and Weyl systems on type I locally compact groups, 2015 | arXiv
[14] Fonction spectrale et valeurs propres d'une classe d'opérateurs non elliptiques, Commun. Partial Differ. Equ., Volume 1 (1976) no. 5, pp. 467-519
[15] Pseudo-Differential Operators and Symmetries, Birkhäuser Verlag, Basel, 2010
[16] Global quantization of pseudo-differential operators on compact Lie groups,
[17]
[18] An extension of Plancherel's formula to separable unimodular groups, Ann. of Math., Volume 52 (1950), pp. 272-292
[19] A non-commutative extension of abstract integration, Ann. of Math., Volume 57 (1953) no. 3, pp. 401-457
Cité par Sources :
☆ The second author was supported by the Leverhulme Research Grant RPG-2014-02 and by the EPSRC Grant EP/K039407/1. No new data was collected or generated during the course of the research.
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier