The aim of this note is to show that lamplighter graphs where the space graph is infinite and at most two-ended and the lamp graph is at most two-ended do not admit harmonic functions with gradients in (i.e. finite p-energy) for any except constants (and, equivalently, that their reduced cohomology is trivial in degree one). Similar arguments are then applied to many direct products of graphs to conclude the same (including all direct products of Cayley graphs). The proof relies on a theorem of Thomassen [16] on spanning lines in squares of graphs.
Le but de cette note est de montrer que plusieurs graphes d'allumeurs de réverbères, où le graphe d'espace est infini avec au plus deux bouts et le graphe des lampes a au plus deux bouts, ne possèdent pas de fonction harmonique non constante à gradient (i.e. une p-energie finie) qu'importe le (et, de manière équivalente, que leur cohomologie réduite est triviale en degré un). Des arguments similaires permettent aussi de conclure pour plusieurs produits directs de graphes (y compris tous les graphes de Cayley). Les démonstrations reposent sur un théorème de Thomassen [16] sur les lignes couvrantes dans le carré des graphes.
Accepted:
Published online:
Antoine Gournay 1
@article{CRMATH_2016__354_8_762_0, author = {Antoine Gournay}, title = {Harmonic functions with finite \protect\emph{p}-energy on lamplighter graphs are constant}, journal = {Comptes Rendus. Math\'ematique}, pages = {762--765}, publisher = {Elsevier}, volume = {354}, number = {8}, year = {2016}, doi = {10.1016/j.crma.2016.04.015}, language = {en}, }
Antoine Gournay. Harmonic functions with finite p-energy on lamplighter graphs are constant. Comptes Rendus. Mathématique, Volume 354 (2016) no. 8, pp. 762-765. doi : 10.1016/j.crma.2016.04.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.04.015/
[1] Coarse cohomology and -cohomology, K-Theory, Volume 13 (1998), pp. 1-22
[2] Lamplighter graphs do not admit harmonic functions of finite energy, Proc. Amer. Math. Soc., Volume 138 (2010) no. 9, pp. 3057-3061
[3] Vanishing of -cohomology and transportation cost, Bull. Lond. Math. Soc., Volume 46 (2014) no. 3, pp. 481-490
[4] Boundary values of random walks and -cohomology in degree one, Groups Geom. Dyn., Volume 9 (2015) no. 4, pp. 1153-1184
[5] Absence of harmonic functions with gradient in some semi-direct products, Potential Anal., Volume 10 (2016) (in press) | arXiv | DOI
[6] Functions conditionally of negative type on groups acting on regular trees, J. Lond. Math. Soc. (2016) (in press) | arXiv | DOI
[7] Asymptotic invariants of groups, Geometric Group Theory (Vol. 2), London Mathematical Society Lecture Note Series, vol. 182, Cambridge University Press, 1993 (viii+295)
[8] Gaussian estimates for Markov chains and random walks on groups, Ann. Probab., Volume 21 (1993) no. 2, pp. 673-709
[9] Poisson boundaries of random walks on discrete solvable groups, Oberwolfach, 1990, Plenum, New York (1991), pp. 205-238
[10] -cohomology for groups of type , 2006 | arXiv
[11] On the first cohomology of discrete groups, Groups Geom. Dyn., Volume 1 (2007), pp. 81-100
[12] Cohomologie : invariance sous quasi-isométrie, 1995 http://www.math.u-psud.fr/~pansu/liste-prepub.html Unpublished, but available on P. Pansu's webpage: (updated in 2004)
[13] Group cohomology and -cohomology of finitely generated groups, Can. Math. Bull., Volume 46 (2003) no. 2, pp. 268-276
[14] Burnside's Problem, spanning trees, and tilings, 2011 | arXiv
[15] Vanishing of the first reduced cohomology with values in an -representation, Ann. Inst. Fourier, Volume 59 (2009) no. 2, pp. 851-876
[16] Hamiltonian paths in squares of infinite locally finite blocks, Ann. Discrete Math., Volume 3 (1978), pp. 269-277
[17] Random Walks on Infinite Graphs and Groups, Cambridge Tracts in Mathematics, vol. 138, Cambridge University Press, 2000
Cited by Sources:
Comments - Policy