[Sur les graphes d'allumeur de réverbères, les fonctions harmoniques de p-énergie finie sont constantes]
Le but de cette note est de montrer que plusieurs graphes d'allumeurs de réverbères, où le graphe d'espace est infini avec au plus deux bouts et le graphe des lampes a au plus deux bouts, ne possèdent pas de fonction harmonique non constante à gradient
The aim of this note is to show that lamplighter graphs where the space graph is infinite and at most two-ended and the lamp graph is at most two-ended do not admit harmonic functions with gradients in
Accepté le :
Publié le :
Antoine Gournay 1
@article{CRMATH_2016__354_8_762_0, author = {Antoine Gournay}, title = {Harmonic functions with finite \protect\emph{p}-energy on lamplighter graphs are constant}, journal = {Comptes Rendus. Math\'ematique}, pages = {762--765}, publisher = {Elsevier}, volume = {354}, number = {8}, year = {2016}, doi = {10.1016/j.crma.2016.04.015}, language = {en}, }
Antoine Gournay. Harmonic functions with finite p-energy on lamplighter graphs are constant. Comptes Rendus. Mathématique, Volume 354 (2016) no. 8, pp. 762-765. doi : 10.1016/j.crma.2016.04.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.04.015/
[1] Coarse cohomology and
[2] Lamplighter graphs do not admit harmonic functions of finite energy, Proc. Amer. Math. Soc., Volume 138 (2010) no. 9, pp. 3057-3061
[3] Vanishing of
[4] Boundary values of random walks and
[5] Absence of harmonic functions with
[6] Functions conditionally of negative type on groups acting on regular trees, J. Lond. Math. Soc. (2016) (in press) | arXiv | DOI
[7] Asymptotic invariants of groups, Geometric Group Theory (Vol. 2), London Mathematical Society Lecture Note Series, vol. 182, Cambridge University Press, 1993 (viii+295)
[8] Gaussian estimates for Markov chains and random walks on groups, Ann. Probab., Volume 21 (1993) no. 2, pp. 673-709
[9] Poisson boundaries of random walks on discrete solvable groups, Oberwolfach, 1990, Plenum, New York (1991), pp. 205-238
[10]
[11] On the first
[12] Cohomologie
[13] Group cohomology and
[14] Burnside's Problem, spanning trees, and tilings, 2011 | arXiv
[15] Vanishing of the first reduced cohomology with values in an
[16] Hamiltonian paths in squares of infinite locally finite blocks, Ann. Discrete Math., Volume 3 (1978), pp. 269-277
[17] Random Walks on Infinite Graphs and Groups, Cambridge Tracts in Mathematics, vol. 138, Cambridge University Press, 2000
- Linear and Nonlinear Harmonic Boundaries of Graphs; An Approach with ℓ p-Cohomology in Degree One, Frontiers in Analysis and Probability (2020), p. 47 | DOI:10.1007/978-3-030-56409-4_3
Cité par 1 document. Sources : Crossref
Commentaires - Politique