Comptes Rendus
Group theory/Combinatorics
Harmonic functions with finite p-energy on lamplighter graphs are constant
Comptes Rendus. Mathématique, Volume 354 (2016) no. 8, pp. 762-765.

The aim of this note is to show that lamplighter graphs where the space graph is infinite and at most two-ended and the lamp graph is at most two-ended do not admit harmonic functions with gradients in p (i.e. finite p-energy) for any p[1,[ except constants (and, equivalently, that their reduced p cohomology is trivial in degree one). Similar arguments are then applied to many direct products of graphs to conclude the same (including all direct products of Cayley graphs). The proof relies on a theorem of Thomassen [16] on spanning lines in squares of graphs.

Le but de cette note est de montrer que plusieurs graphes d'allumeurs de réverbères, où le graphe d'espace est infini avec au plus deux bouts et le graphe des lampes a au plus deux bouts, ne possèdent pas de fonction harmonique non constante à gradient p (i.e. une p-energie finie) qu'importe le p[1,[ (et, de manière équivalente, que leur cohomologie p réduite est triviale en degré un). Des arguments similaires permettent aussi de conclure pour plusieurs produits directs de graphes (y compris tous les graphes de Cayley). Les démonstrations reposent sur un théorème de Thomassen [16] sur les lignes couvrantes dans le carré des graphes.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.04.015

Antoine Gournay 1

1 TU Dresden, Fachrichtung Mathematik, 01062 Dresden, Germany
@article{CRMATH_2016__354_8_762_0,
     author = {Antoine Gournay},
     title = {Harmonic functions with finite \protect\emph{p}-energy on lamplighter graphs are constant},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {762--765},
     publisher = {Elsevier},
     volume = {354},
     number = {8},
     year = {2016},
     doi = {10.1016/j.crma.2016.04.015},
     language = {en},
}
TY  - JOUR
AU  - Antoine Gournay
TI  - Harmonic functions with finite p-energy on lamplighter graphs are constant
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 762
EP  - 765
VL  - 354
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crma.2016.04.015
LA  - en
ID  - CRMATH_2016__354_8_762_0
ER  - 
%0 Journal Article
%A Antoine Gournay
%T Harmonic functions with finite p-energy on lamplighter graphs are constant
%J Comptes Rendus. Mathématique
%D 2016
%P 762-765
%V 354
%N 8
%I Elsevier
%R 10.1016/j.crma.2016.04.015
%G en
%F CRMATH_2016__354_8_762_0
Antoine Gournay. Harmonic functions with finite p-energy on lamplighter graphs are constant. Comptes Rendus. Mathématique, Volume 354 (2016) no. 8, pp. 762-765. doi : 10.1016/j.crma.2016.04.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.04.015/

[1] G. Élek Coarse cohomology and p-cohomology, K-Theory, Volume 13 (1998), pp. 1-22

[2] A. Georgakopoulos Lamplighter graphs do not admit harmonic functions of finite energy, Proc. Amer. Math. Soc., Volume 138 (2010) no. 9, pp. 3057-3061

[3] A. Gournay Vanishing of p-cohomology and transportation cost, Bull. Lond. Math. Soc., Volume 46 (2014) no. 3, pp. 481-490

[4] A. Gournay Boundary values of random walks and p-cohomology in degree one, Groups Geom. Dyn., Volume 9 (2015) no. 4, pp. 1153-1184

[5] A. Gournay Absence of harmonic functions with p gradient in some semi-direct products, Potential Anal., Volume 10 (2016) (in press) | arXiv | DOI

[6] A. Gournay; P.-N. Jolissaint Functions conditionally of negative type on groups acting on regular trees, J. Lond. Math. Soc. (2016) (in press) | arXiv | DOI

[7] M. Gromov Asymptotic invariants of groups, Geometric Group Theory (Vol. 2), London Mathematical Society Lecture Note Series, vol. 182, Cambridge University Press, 1993 (viii+295)

[8] W. Hebisch; L. Saloff-Coste Gaussian estimates for Markov chains and random walks on groups, Ann. Probab., Volume 21 (1993) no. 2, pp. 673-709

[9] V.A. Kaimanovich Poisson boundaries of random walks on discrete solvable groups, Oberwolfach, 1990, Plenum, New York (1991), pp. 205-238

[10] E. Kappos p-cohomology for groups of type FPn, 2006 | arXiv

[11] F. Martin; A. Valette On the first Lp cohomology of discrete groups, Groups Geom. Dyn., Volume 1 (2007), pp. 81-100

[12] P. Pansu Cohomologie p: invariance sous quasi-isométrie, 1995 http://www.math.u-psud.fr/~pansu/liste-prepub.html Unpublished, but available on P. Pansu's webpage: (updated in 2004)

[13] M. Puls Group cohomology and Lp-cohomology of finitely generated groups, Can. Math. Bull., Volume 46 (2003) no. 2, pp. 268-276

[14] B. Seward Burnside's Problem, spanning trees, and tilings, 2011 | arXiv

[15] R. Tessera Vanishing of the first reduced cohomology with values in an Lp-representation, Ann. Inst. Fourier, Volume 59 (2009) no. 2, pp. 851-876

[16] C. Thomassen Hamiltonian paths in squares of infinite locally finite blocks, Ann. Discrete Math., Volume 3 (1978), pp. 269-277

[17] W. Woess Random Walks on Infinite Graphs and Groups, Cambridge Tracts in Mathematics, vol. 138, Cambridge University Press, 2000

Cited by Sources:

Comments - Policy