[La classe de la droite affine est un diviseur de zéro dans l'anneau de Grothendieck : une amélioration]
Lev A. Borisov has shown that the class of the affine line is a zero divisor in the Grothendieck ring of algebraic varieties over complex numbers. We improve the final formula by removing a factor.
Lev A. Borisov a prouvé que la classe de la droite affine est un diviseur de zéro dans l'anneau de Grothendieck des variétés algébriques complexes. Nous améliorons la formule finale en supprimant un facteur.
Accepté le :
Publié le :
Nicolas Martin 1
@article{CRMATH_2016__354_9_936_0, author = {Nicolas Martin}, title = {The class of the affine line is a zero divisor in the {Grothendieck} ring: {An} improvement}, journal = {Comptes Rendus. Math\'ematique}, pages = {936--939}, publisher = {Elsevier}, volume = {354}, number = {9}, year = {2016}, doi = {10.1016/j.crma.2016.05.016}, language = {en}, }
Nicolas Martin. The class of the affine line is a zero divisor in the Grothendieck ring: An improvement. Comptes Rendus. Mathématique, Volume 354 (2016) no. 9, pp. 936-939. doi : 10.1016/j.crma.2016.05.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.05.016/
[1] The class of the affine line is a zero divisor in the Grothendieck ring, 2014 | arXiv
[2] Motivic measures and stable birational geometry, Mosc. Math. J., Volume 3 (2003) no. 1, pp. 85-95
[3] The Grothendieck ring of varieties is not a domain, Math. Res. Lett., Volume 9 (2002) no. 4, pp. 493-497
[4] The Pfaffian Calabi–Yau, its mirror, and their link to the Grassmannian G(2, 7), Compos. Math., Volume 122 (2000) no. 2, pp. 135-149
[5] Intégration motivique sur les schémas formels, Bull. Soc. Math. Fr., Volume 132 (2004) no. 1, pp. 1-54
- Virtual classes of character stacks, Journal of Geometry and Physics, Volume 211 (2025), p. 105450 | DOI:10.1016/j.geomphys.2025.105450
- Complements of hypersurfaces in projective spaces, Journal de l’École polytechnique — Mathématiques, Volume 11 (2024), p. 733 | DOI:10.5802/jep.264
- Motives and the Pfaffian–Grassmannian equivalence, Journal of the London Mathematical Society, Volume 104 (2021) no. 4, p. 1738 | DOI:10.1112/jlms.12473
- An example of birationally inequivalent projective symplectic varieties which are D-equivalent and L-equivalent, Mathematische Zeitschrift, Volume 297 (2021) no. 1-2, p. 459 | DOI:10.1007/s00209-020-02519-3
- Topics on the Geometry of Rational Homogeneous Spaces, Acta Mathematica Sinica, English Series, Volume 36 (2020) no. 8, p. 851 | DOI:10.1007/s10114-020-9386-1
- L‐equivalence for degree five elliptic curves, elliptic fibrations and K3 surfaces, Bulletin of the London Mathematical Society, Volume 52 (2020) no. 2, p. 395 | DOI:10.1112/blms.12339
- Intersections of two Grassmannians in ℙ9, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2020 (2020) no. 760, p. 133 | DOI:10.1515/crelle-2018-0014
- Equivalence of K3 surfaces from Verra threefolds, Kyoto Journal of Mathematics, Volume 60 (2020) no. 4 | DOI:10.1215/21562261-2019-0059
- Derived equivalence and Grothendieck ring of varieties: the case of K3 surfaces of degree 12 and abelian varieties, Selecta Mathematica, Volume 26 (2020) no. 3 | DOI:10.1007/s00029-020-00561-x
- Motivic information, Bollettino dell'Unione Matematica Italiana, Volume 12 (2019) no. 1-2, p. 19 | DOI:10.1007/s40574-018-0167-z
- Arc spaces, motivic measure and Lipschitz geometry of real algebraic sets, Mathematische Annalen, Volume 374 (2019) no. 1-2, p. 211 | DOI:10.1007/s00208-019-01805-8
- Automorphisms of positive entropy on some hyperKähler manifolds via derived automorphisms of K3 surfaces, Advances in Mathematics, Volume 335 (2018), p. 1 | DOI:10.1016/j.aim.2018.06.004
- Cremona transformations and derived equivalences of K3 surfaces, Compositio Mathematica, Volume 154 (2018) no. 7, p. 1508 | DOI:10.1112/s0010437x18007145
- The class of the affine line is a zero divisor in the Grothendieck ring: Via 𝐺₂-Grassmannians, Journal of Algebraic Geometry, Volume 28 (2018) no. 2, p. 245 | DOI:10.1090/jag/731
- The Grothendieck Ring of Varieties, Motivic Integration, Volume 325 (2018), p. 55 | DOI:10.1007/978-1-4939-7887-8_2
- On the motive of intersections of two Grassmannians in
P 9, Research in the Mathematical Sciences, Volume 5 (2018) no. 3 | DOI:10.1007/s40687-018-0149-x - Grothendieck ring of varieties, D- and L-equivalence, and families of quadrics, Selecta Mathematica, Volume 24 (2018) no. 4, p. 3475 | DOI:10.1007/s00029-017-0344-4
- The annihilator of the Lefschetz motive, Duke Mathematical Journal, Volume 166 (2017) no. 11 | DOI:10.1215/00127094-0000016x
- The class of the affine line is a zero divisor in the Grothendieck ring, Journal of Algebraic Geometry, Volume 27 (2017) no. 2, p. 203 | DOI:10.1090/jag/701
Cité par 19 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier