Comptes Rendus
Algebraic geometry
The class of the affine line is a zero divisor in the Grothendieck ring: An improvement
[La classe de la droite affine est un diviseur de zéro dans l'anneau de Grothendieck : une amélioration]
Comptes Rendus. Mathématique, Volume 354 (2016) no. 9, pp. 936-939.

Lev A. Borisov has shown that the class of the affine line is a zero divisor in the Grothendieck ring of algebraic varieties over complex numbers. We improve the final formula by removing a factor.

Lev A. Borisov a prouvé que la classe de la droite affine est un diviseur de zéro dans l'anneau de Grothendieck des variétés algébriques complexes. Nous améliorons la formule finale en supprimant un facteur.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2016.05.016

Nicolas Martin 1

1 Centre de mathématiques Laurent-Schwartz, École polytechnique, 91128 Palaiseau cedex, France
@article{CRMATH_2016__354_9_936_0,
     author = {Nicolas Martin},
     title = {The class of the affine line is a zero divisor in the {Grothendieck} ring: {An} improvement},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {936--939},
     publisher = {Elsevier},
     volume = {354},
     number = {9},
     year = {2016},
     doi = {10.1016/j.crma.2016.05.016},
     language = {en},
}
TY  - JOUR
AU  - Nicolas Martin
TI  - The class of the affine line is a zero divisor in the Grothendieck ring: An improvement
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 936
EP  - 939
VL  - 354
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2016.05.016
LA  - en
ID  - CRMATH_2016__354_9_936_0
ER  - 
%0 Journal Article
%A Nicolas Martin
%T The class of the affine line is a zero divisor in the Grothendieck ring: An improvement
%J Comptes Rendus. Mathématique
%D 2016
%P 936-939
%V 354
%N 9
%I Elsevier
%R 10.1016/j.crma.2016.05.016
%G en
%F CRMATH_2016__354_9_936_0
Nicolas Martin. The class of the affine line is a zero divisor in the Grothendieck ring: An improvement. Comptes Rendus. Mathématique, Volume 354 (2016) no. 9, pp. 936-939. doi : 10.1016/j.crma.2016.05.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.05.016/

[1] L. Borisov The class of the affine line is a zero divisor in the Grothendieck ring, 2014 | arXiv

[2] M. Larsen; V. Lunts Motivic measures and stable birational geometry, Mosc. Math. J., Volume 3 (2003) no. 1, pp. 85-95

[3] B. Poonen The Grothendieck ring of varieties is not a domain, Math. Res. Lett., Volume 9 (2002) no. 4, pp. 493-497

[4] E. Rødland The Pfaffian Calabi–Yau, its mirror, and their link to the Grassmannian G(2, 7), Compos. Math., Volume 122 (2000) no. 2, pp. 135-149

[5] J. Sebag Intégration motivique sur les schémas formels, Bull. Soc. Math. Fr., Volume 132 (2004) no. 1, pp. 1-54

  • Ángel González-Prieto; Márton Hablicsek; Jesse Vogel Virtual classes of character stacks, Journal of Geometry and Physics, Volume 211 (2025), p. 105450 | DOI:10.1016/j.geomphys.2025.105450
  • Jérémy Blanc; Pierre-Marie Poloni; Immanuel Van Santen Complements of hypersurfaces in projective spaces, Journal de l’École polytechnique — Mathématiques, Volume 11 (2024), p. 733 | DOI:10.5802/jep.264
  • Robert Laterveer Motives and the Pfaffian–Grassmannian equivalence, Journal of the London Mathematical Society, Volume 104 (2021) no. 4, p. 1738 | DOI:10.1112/jlms.12473
  • Shinnosuke Okawa An example of birationally inequivalent projective symplectic varieties which are D-equivalent and L-equivalent, Mathematische Zeitschrift, Volume 297 (2021) no. 1-2, p. 459 | DOI:10.1007/s00209-020-02519-3
  • Laurent Manivel Topics on the Geometry of Rational Homogeneous Spaces, Acta Mathematica Sinica, English Series, Volume 36 (2020) no. 8, p. 851 | DOI:10.1007/s10114-020-9386-1
  • Evgeny Shinder; Ziyu Zhang L‐equivalence for degree five elliptic curves, elliptic fibrations and K3 surfaces, Bulletin of the London Mathematical Society, Volume 52 (2020) no. 2, p. 395 | DOI:10.1112/blms.12339
  • Lev A. Borisov; Andrei Căldăraru; Alexander Perry Intersections of two Grassmannians in ℙ9, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2020 (2020) no. 760, p. 133 | DOI:10.1515/crelle-2018-0014
  • Grzegorz Kapustka; Michał Kapustka; Riccardo Moschetti Equivalence of K3 surfaces from Verra threefolds, Kyoto Journal of Mathematics, Volume 60 (2020) no. 4 | DOI:10.1215/21562261-2019-0059
  • Atsushi Ito; Makoto Miura; Shinnosuke Okawa; Kazushi Ueda Derived equivalence and Grothendieck ring of varieties: the case of K3 surfaces of degree 12 and abelian varieties, Selecta Mathematica, Volume 26 (2020) no. 3 | DOI:10.1007/s00029-020-00561-x
  • Matilde Marcolli Motivic information, Bollettino dell'Unione Matematica Italiana, Volume 12 (2019) no. 1-2, p. 19 | DOI:10.1007/s40574-018-0167-z
  • Jean-Baptiste Campesato; Toshizumi Fukui; Krzysztof Kurdyka; Adam Parusiński Arc spaces, motivic measure and Lipschitz geometry of real algebraic sets, Mathematische Annalen, Volume 374 (2019) no. 1-2, p. 211 | DOI:10.1007/s00208-019-01805-8
  • Genki Ouchi Automorphisms of positive entropy on some hyperKähler manifolds via derived automorphisms of K3 surfaces, Advances in Mathematics, Volume 335 (2018), p. 1 | DOI:10.1016/j.aim.2018.06.004
  • Brendan Hassett; Kuan-Wen Lai Cremona transformations and derived equivalences of K3 surfaces, Compositio Mathematica, Volume 154 (2018) no. 7, p. 1508 | DOI:10.1112/s0010437x18007145
  • Atsushi Ito; Makoto Miura; Shinnosuke Okawa; Kazushi Ueda The class of the affine line is a zero divisor in the Grothendieck ring: Via 𝐺₂-Grassmannians, Journal of Algebraic Geometry, Volume 28 (2018) no. 2, p. 245 | DOI:10.1090/jag/731
  • Antoine Chambert-Loir; Johannes Nicaise; Julien Sebag The Grothendieck Ring of Varieties, Motivic Integration, Volume 325 (2018), p. 55 | DOI:10.1007/978-1-4939-7887-8_2
  • Robert Laterveer On the motive of intersections of two Grassmannians in \varvecP9 P 9, Research in the Mathematical Sciences, Volume 5 (2018) no. 3 | DOI:10.1007/s40687-018-0149-x
  • Alexander Kuznetsov; Evgeny Shinder Grothendieck ring of varieties, D- and L-equivalence, and families of quadrics, Selecta Mathematica, Volume 24 (2018) no. 4, p. 3475 | DOI:10.1007/s00029-017-0344-4
  • Inna Zakharevich The annihilator of the Lefschetz motive, Duke Mathematical Journal, Volume 166 (2017) no. 11 | DOI:10.1215/00127094-0000016x
  • Lev Borisov The class of the affine line is a zero divisor in the Grothendieck ring, Journal of Algebraic Geometry, Volume 27 (2017) no. 2, p. 203 | DOI:10.1090/jag/701

Cité par 19 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: