We consider the determinant polynomial and we describe the limit points of the set of all polynomials obtained from the determinant polynomial by linear change of variables. This answers a question of Joseph M. Landsberg.
Nous étudions le polynôme donné par le déterminant et décrivons l'adhérence de l'ensemble des polynômes obtenus par changements de variables linéaires à partir de ce déterminant, ce qui répond à une question de Joseph M. Lansberg.
Accepted:
Published online:
Jesko Hüttenhain 1; Pierre Lairez 1
@article{CRMATH_2016__354_9_931_0, author = {Jesko H\"uttenhain and Pierre Lairez}, title = {The boundary of the orbit of the 3-by-3 determinant polynomial}, journal = {Comptes Rendus. Math\'ematique}, pages = {931--935}, publisher = {Elsevier}, volume = {354}, number = {9}, year = {2016}, doi = {10.1016/j.crma.2016.07.002}, language = {en}, }
Jesko Hüttenhain; Pierre Lairez. The boundary of the orbit of the 3-by-3 determinant polynomial. Comptes Rendus. Mathématique, Volume 354 (2016) no. 9, pp. 931-935. doi : 10.1016/j.crma.2016.07.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.07.002/
[1] Primitive spaces of matrices of bounded rank. II, J. Aust. Math. Soc. A, Volume 34 (1983) no. 3, pp. 306-315
[2] The Hilbert null-cone on tuples of matrices and bilinear forms, Math. Z., Volume 254 (2006) no. 4, pp. 785-809 | DOI
[3] Sur une généralisation du groupe orthogonal à quatre variables, Arch. Math., Volume 1 (1949), pp. 282-287 | DOI
[4] Vector spaces of matrices of low rank, Adv. Math., Volume 70 (1988) no. 2, pp. 135-155 | DOI
[5] The Geometry of Schemes, Grad. Texts Math., vol. 197, Springer-Verlag, New York, 2000 | DOI
[6] On matrix spaces with zero determinant, Linear Multilinear Algebra, Volume 18 (1985) no. 3, pp. 255-266 | DOI
[7] Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas, Publ. Math. IHÉS, Volume 32 (1967)
[8] Algebraic Geometry. A First Course, Grad. Texts Math., vol. 133, Springer-Verlag, New York, 1995 (corrected reprint of the 1992 original)
[9] Hypersurfaces with degenerate duals and the geometric complexity theory program, Comment. Math. Helv., Volume 88 (2013) no. 2, pp. 469-484 | DOI
[10] Geometric complexity theory: an introduction for geometers, Ann. Univ. Ferrara, Sez. 7: Sci. Mat., Volume 61 (2015) no. 1, pp. 65-117 | DOI
[11] Geometric complexity theory. I. An approach to the P vs. NP and related problems, SIAM J. Comput., Volume 31 (2001) no. 2, pp. 496-526 | DOI
[12] Invariant theory (A.N. Parshin; I.R. Shafarevich, eds.), Algebraic Geometry IV, Encyclopaedia Math. Sci., vol. 55, Springer, Berlin, Heidelberg, 1994, pp. 123-278 | DOI
Cited by Sources:
☆ Partially funded by the research grant BU 1371/2-2 of the Deutsche Forschungsgemeinschaft.
Comments - Policy