Comptes Rendus
Statistique
Estimation locale linéaire de la fonction de régression pour des variables hilbertiennes
[Local linear estimation of the regression function with Hilbertian variables]
Comptes Rendus. Mathématique, Volume 354 (2016) no. 8, pp. 847-850.

In this paper, we introduce a new nonparametric estimation of the regression function when both the response and the explanatory variables are of the functional kind. First, we construct a local linear estimator of this regression operator, then we state its rate for the uniform almost complete convergence. This latter is expressed as a function of the small ball probability of the predictor and as a function of the entropy of the set on which the uniformity is obtained.

Dans cette Note, nous étudions l'estimation non paramétrique de la fonction de régression, lorsque la variable réponse et la covariable sont fonctionnelles. Nous construisons un estimateur local linéaire de l'opérateur de régression, et nous évaluons son erreur d'estimation. Ensuite, nous démontrons sa convergence presque complète et uniforme. La vitesse de convergence obtenue est exprimée en fonction de la probabilité des petites boules de la covariable et en fonction de la fonction d'entropie de l'ensemble sur lequel la convergence uniforme est obtenue.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.05.017

Jacques Demongeot 1; Ali Laksaci 2; Amina Naceri 2; Mustapha Rachdi 3

1 Université Grenoble Alpes, laboratoire AGEIS EA 7407, faculté de médecine de Grenoble, 38700 La Tronche, France
2 Laboratoire de statistique et processus stochastiques, université Djillali-Liabès, Sidi Bel-Abbès, BP 89, Sidi Bel-Abbès, 22000, Algérie
3 Université Grenoble Alpes, laboratoire AGEIS EA 7407, UFR SHS, BP 47, 38040 Grenoble cedex 09, France
@article{CRMATH_2016__354_8_847_0,
     author = {Jacques Demongeot and Ali Laksaci and Amina Naceri and Mustapha Rachdi},
     title = {Estimation locale lin\'eaire de la fonction de r\'egression pour des variables hilbertiennes},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {847--850},
     publisher = {Elsevier},
     volume = {354},
     number = {8},
     year = {2016},
     doi = {10.1016/j.crma.2016.05.017},
     language = {fr},
}
TY  - JOUR
AU  - Jacques Demongeot
AU  - Ali Laksaci
AU  - Amina Naceri
AU  - Mustapha Rachdi
TI  - Estimation locale linéaire de la fonction de régression pour des variables hilbertiennes
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 847
EP  - 850
VL  - 354
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crma.2016.05.017
LA  - fr
ID  - CRMATH_2016__354_8_847_0
ER  - 
%0 Journal Article
%A Jacques Demongeot
%A Ali Laksaci
%A Amina Naceri
%A Mustapha Rachdi
%T Estimation locale linéaire de la fonction de régression pour des variables hilbertiennes
%J Comptes Rendus. Mathématique
%D 2016
%P 847-850
%V 354
%N 8
%I Elsevier
%R 10.1016/j.crma.2016.05.017
%G fr
%F CRMATH_2016__354_8_847_0
Jacques Demongeot; Ali Laksaci; Amina Naceri; Mustapha Rachdi. Estimation locale linéaire de la fonction de régression pour des variables hilbertiennes. Comptes Rendus. Mathématique, Volume 354 (2016) no. 8, pp. 847-850. doi : 10.1016/j.crma.2016.05.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.05.017/

[1] A. Baìllo; A. Grané Local linear regression for functional predictor and scalar response, J. Multivar. Anal., Volume 100 (2009), pp. 102-111

[2] J. Barrientos-Marin; F. Ferraty; P. Vieu Locally modelled regression and functional data, J. Nonparametr. Stat., Volume 22 (2010), pp. 617-632

[3] A. Berlinet; A. Elamine; A. Mas Local linear regression for functional data, Ann. Inst. Stat. Math., Volume 63 (2011), pp. 1047-1075

[4] E. Boj; P. Delicado; J. Fortiana Distance-based local linear regression for functional predictors, Comput. Stat. Data Anal., Volume 54 (2010), pp. 429-437

[5] D. Bosq Linear Processes in Function Spaces: Theory and Applications, Lecture Notes in Statistics, vol. 149, Springer, 2000

[6] A. Cuevas A partial overview of the theory of statistics with functional data, J. Stat. Plan. Inference, Volume 147 (2014), pp. 1-23

[7] S. Dabo-Niang; N. Rhomari Kernel regression estimation in a Banach space, J. Stat. Plan. Inference, Volume 139 (2009), pp. 1421-1434

[8] J. Demongeot; A. Laksaci; F. Madani; M. Rachdi Functional data: local linear estimation of the conditional density and its application, Statistics, Volume 47 (2013), pp. 26-44

[9] J. Fan; I. Gijbels Local Polynomial Modelling and Its Applications, Chapman & Hall, London, 1996

[10] F. Ferraty; A. Laksaci; A. Tadj; P. Vieu Kernel regression with functional response, Electron. J. Stat., Volume 5 (2011), pp. 159-171

[11] F. Ferraty; A. Laksaci; A. Tadj; P. Vieu Estimation de la fonction de régression pour variable explicative et réponses fonctionnelles dépendantes, C. R. Acad. Sci. Paris, Ser. I, Volume 350 (2012), pp. 717-720

[12] F. Ferraty; I. Van Keilegom; P. Vieu Regression when both response and predictor are functions, J. Multivar. Anal., Volume 109 (2012), pp. 10-28

[13] F. Ferraty; P. Vieu Nonparametric Functional Data Analysis. Theory and Practice, Springer Series in Statistics, Springer-Verlag, New York, 2006

[14] A. Goia; P. Vieu An introduction to recent advances in high/infinite dimensional statistics, J. Multivar. Anal., Volume 146 (2016), pp. 1-6 | DOI

[15] T. Hsing; R. Eubank Theoretical Foundations of Functional Data Analysis, With an Introduction to Linear Operators, Wiley Series in Probability and Statistics, John Wiley & Sons, Chichester, UK, 2015

[16] J.O. Ramsay; B.W. Silverman Applied Functional Data Analysis. Methods and Case Studies, Springer Series in Statistics, Springer-Verlag, New York, 2002

[17] J. Zhang Analysis of Variance for Functional Data, Monographs on Statistics and Applied Probability, vol. 127, CRC Press, Boca Raton, FL, USA, 2014

Cited by Sources:

Comments - Policy