Comptes Rendus
Mathematical analysis
On the maximal mean curvature of a smooth surface
Comptes Rendus. Mathématique, Volume 354 (2016) no. 9, pp. 891-895.

Given a smooth simply connected planar domain, the area is bounded away from zero in terms of the maximal curvature alone. We show that in higher dimensions this is not true, and for a given maximal mean curvature we provide smooth embeddings of the ball with arbitrary small volume.

Étant donné un domaine planaire simplement connexe lisse, l'aire est bornée loin de zéro en termes de la seule courbure maximale. Nous montrons que pour des dimensions plus élevées ce n'est pas vrai, et nous fournissons, pour un maximum donné de la courbure moyenne, des plongements lisses de la boule avec un petit volume arbitraire.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.05.018

Vincenzo Ferone 1; Carlo Nitsch 1; Cristina Trombetti 1

1 Università degli Studi di Napoli Federico II, Napoli, Italy
@article{CRMATH_2016__354_9_891_0,
     author = {Vincenzo Ferone and Carlo Nitsch and Cristina Trombetti},
     title = {On the maximal mean curvature of a smooth surface},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {891--895},
     publisher = {Elsevier},
     volume = {354},
     number = {9},
     year = {2016},
     doi = {10.1016/j.crma.2016.05.018},
     language = {en},
}
TY  - JOUR
AU  - Vincenzo Ferone
AU  - Carlo Nitsch
AU  - Cristina Trombetti
TI  - On the maximal mean curvature of a smooth surface
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 891
EP  - 895
VL  - 354
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2016.05.018
LA  - en
ID  - CRMATH_2016__354_9_891_0
ER  - 
%0 Journal Article
%A Vincenzo Ferone
%A Carlo Nitsch
%A Cristina Trombetti
%T On the maximal mean curvature of a smooth surface
%J Comptes Rendus. Mathématique
%D 2016
%P 891-895
%V 354
%N 9
%I Elsevier
%R 10.1016/j.crma.2016.05.018
%G en
%F CRMATH_2016__354_9_891_0
Vincenzo Ferone; Carlo Nitsch; Cristina Trombetti. On the maximal mean curvature of a smooth surface. Comptes Rendus. Mathématique, Volume 354 (2016) no. 9, pp. 891-895. doi : 10.1016/j.crma.2016.05.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.05.018/

[1] M. Bareket On an isoperimetric inequality for the first eigenvalue of a boundary value problem, SIAM J. Math. Anal., Volume 8 (1977), pp. 280-287

[2] D. Bucur; A. Henrot A new isoperimetric inequality for the elasticae, J. Eur. Math. Soc. (2016) (in press) | arXiv

[3] Y.D. Burago; V.A. Zalgaller Geometric Inequalities, Springer, New York, 1988

[4] V. Ferone; C. Nitsch; B. Kawohl The elastica problem under area constraint, Math. Ann., Volume 365 (2016), pp. 987-1015

[5] V. Ferone; C. Nitsch; B. Kawohl Generalized Elastica problems under area constraint (preprint) | arXiv

[6] V. Ferone; C. Nitsch; C. Trombetti On a conjectured reverse Faber–Krahn inequality for a Steklov-type Laplacian eigenvalue, Commun. Pure Appl. Anal., Volume 14 (2015), pp. 63-82

[7] P. Freitas; D. Krejčiřík The first Robin eigenvalue with negative boundary parameter, Adv. Math., Volume 280 (2015), pp. 322-339

[8] M.E. Gage An isoperimetric inequality with applications to curve shortening, Duke Math. J., Volume 40 (1983) no. 4, pp. 1225-1229

[9] A. Henrot; J. Dalphin; S. Masnou; T. Takahashi On the minimization of total mean curvature, J. Geom. Anal. (2015) (first online) | DOI

[10] K. Kenmotsu Surfaces with Constant Mean Curvature, Transl. Math. Monogr., vol. 221, American Mathematical Society, Providence, RI, USA, 2003

[11] H. Kovařík; K. Pankrashkin On the p-Laplacian with Robin boundary conditions and boundary trace theorems (preprint) | arXiv

[12] K. Pankrashkin An inequality for the maximum curvature through a geometric flow, Arch. Math. (Basel), Volume 105 (1983), pp. 297-300

[13] K. Pankrashkin; N. Popoff Mean curvature bounds and eigenvalues of Robin Laplacians, Calc. Var. Partial Differ. Equ., Volume 54 (2015), pp. 1947-1961

[14] G. Pestov; V. Ionin On the largest possible circle imbedded in a given closed curve, Dokl. Akad. Nauk SSSR, Volume 127 (1959), pp. 1170-1172 (in Russian)

[15] P. Topping Relating diameter and mean curvature for submanifolds of Euclidean space, Comment. Math. Helv., Volume 83 (2008) no. 3, pp. 539-546

[16] T.J. Willmore Note on embedded surfaces, An. Ştiinţ. Univ. ‘Al.I. Cuza’ Iaşi, Mat., Volume 11B (1965), pp. 493-496

Cited by Sources:

Comments - Policy