Given a smooth simply connected planar domain, the area is bounded away from zero in terms of the maximal curvature alone. We show that in higher dimensions this is not true, and for a given maximal mean curvature we provide smooth embeddings of the ball with arbitrary small volume.
Étant donné un domaine planaire simplement connexe lisse, l'aire est bornée loin de zéro en termes de la seule courbure maximale. Nous montrons que pour des dimensions plus élevées ce n'est pas vrai, et nous fournissons, pour un maximum donné de la courbure moyenne, des plongements lisses de la boule avec un petit volume arbitraire.
Accepted:
Published online:
Vincenzo Ferone 1; Carlo Nitsch 1; Cristina Trombetti 1
@article{CRMATH_2016__354_9_891_0, author = {Vincenzo Ferone and Carlo Nitsch and Cristina Trombetti}, title = {On the maximal mean curvature of a smooth surface}, journal = {Comptes Rendus. Math\'ematique}, pages = {891--895}, publisher = {Elsevier}, volume = {354}, number = {9}, year = {2016}, doi = {10.1016/j.crma.2016.05.018}, language = {en}, }
Vincenzo Ferone; Carlo Nitsch; Cristina Trombetti. On the maximal mean curvature of a smooth surface. Comptes Rendus. Mathématique, Volume 354 (2016) no. 9, pp. 891-895. doi : 10.1016/j.crma.2016.05.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.05.018/
[1] On an isoperimetric inequality for the first eigenvalue of a boundary value problem, SIAM J. Math. Anal., Volume 8 (1977), pp. 280-287
[2] A new isoperimetric inequality for the elasticae, J. Eur. Math. Soc. (2016) (in press) | arXiv
[3] Geometric Inequalities, Springer, New York, 1988
[4] The elastica problem under area constraint, Math. Ann., Volume 365 (2016), pp. 987-1015
[5] Generalized Elastica problems under area constraint (preprint) | arXiv
[6] On a conjectured reverse Faber–Krahn inequality for a Steklov-type Laplacian eigenvalue, Commun. Pure Appl. Anal., Volume 14 (2015), pp. 63-82
[7] The first Robin eigenvalue with negative boundary parameter, Adv. Math., Volume 280 (2015), pp. 322-339
[8] An isoperimetric inequality with applications to curve shortening, Duke Math. J., Volume 40 (1983) no. 4, pp. 1225-1229
[9] On the minimization of total mean curvature, J. Geom. Anal. (2015) (first online) | DOI
[10] Surfaces with Constant Mean Curvature, Transl. Math. Monogr., vol. 221, American Mathematical Society, Providence, RI, USA, 2003
[11] On the p-Laplacian with Robin boundary conditions and boundary trace theorems (preprint) | arXiv
[12] An inequality for the maximum curvature through a geometric flow, Arch. Math. (Basel), Volume 105 (1983), pp. 297-300
[13] Mean curvature bounds and eigenvalues of Robin Laplacians, Calc. Var. Partial Differ. Equ., Volume 54 (2015), pp. 1947-1961
[14] On the largest possible circle imbedded in a given closed curve, Dokl. Akad. Nauk SSSR, Volume 127 (1959), pp. 1170-1172 (in Russian)
[15] Relating diameter and mean curvature for submanifolds of Euclidean space, Comment. Math. Helv., Volume 83 (2008) no. 3, pp. 539-546
[16] Note on embedded surfaces, An. Ştiinţ. Univ. ‘Al.I. Cuza’ Iaşi, Mat., Volume 11B (1965), pp. 493-496
Cited by Sources:
Comments - Policy