A result concerning Bruhat sequences for a Borcherds–Kac–Moody algebra is established. It is needed for the Littelmann path model. For a Kac–Moody Lie algebra, it is a consequence of the exchange lemma. In the present framework, the proof is more complex.
Un résultat pour les suites de Bruhat est établi dans le cadre d'une algèbre de Borcherds–Kac–Moody. Il est nécessaire au modèle des chemins de Littelmann. Pour une algèbre de Kac–Moody, c'est une conséquence du lemme de substitution. Dans le cadre actuel, la démonstration est plus complexe.
Accepted:
Published online:
Anthony Joseph 1; Polyxeni Lamprou 1
@article{CRMATH_2016__354_9_887_0, author = {Anthony Joseph and Polyxeni Lamprou}, title = {A substitution theorem for the {Borcherds{\textendash}Weyl} semigroup}, journal = {Comptes Rendus. Math\'ematique}, pages = {887--890}, publisher = {Elsevier}, volume = {354}, number = {9}, year = {2016}, doi = {10.1016/j.crma.2016.06.004}, language = {en}, }
Anthony Joseph; Polyxeni Lamprou. A substitution theorem for the Borcherds–Weyl semigroup. Comptes Rendus. Mathématique, Volume 354 (2016) no. 9, pp. 887-890. doi : 10.1016/j.crma.2016.06.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.06.004/
[1] Generalized Kac–Moody algebras, J. Algebra, Volume 115 (1988) no. 2, pp. 501-512
[2] A Littelmann path model for crystals of generalized Kac–Moody algebras, Adv. Math., Volume 221 (2009) no. 6, pp. 2019-2058
[3] A Littelmann path model for crystals of generalized Kac–Moody algebras revisited | arXiv
Cited by Sources:
Comments - Policy