[Une application du critère symplectique à quelques équations de Fermat]
Soit p un nombre premier. Au début des années 2000, il a été démontré que les équations de Fermat à coefficients
Let p be a prime number. In the early 2000s, it was proved that the Fermat equations with coefficients
Accepté le :
Publié le :
Nuno Freitas 1 ; Alain Kraus 2
@article{CRMATH_2016__354_8_751_0, author = {Nuno Freitas and Alain Kraus}, title = {An application of the symplectic argument to some {Fermat-type} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {751--755}, publisher = {Elsevier}, volume = {354}, number = {8}, year = {2016}, doi = {10.1016/j.crma.2016.06.002}, language = {en}, }
Nuno Freitas; Alain Kraus. An application of the symplectic argument to some Fermat-type equations. Comptes Rendus. Mathématique, Volume 354 (2016) no. 8, pp. 751-755. doi : 10.1016/j.crma.2016.06.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.06.002/
[1] On the Fermat-type equation
[2] Fermat's Last Theorem over some small real quadratic fields, Algebra Number Theory, Volume 9 (2015) no. 4, pp. 875-895
[3] Courbes de Fermat : résultats et problèmes, J. Reine Angew. Math., Volume 548 (2002), pp. 167-234
[4] Sur une question de B. Mazur, Math. Ann., Volume 293 (1992), pp. 259-275
[5] Sur les représentations modulaires de degré 2 de
- Proceedings of the American Mathematical Society, 152 (2024) no. 2, pp. 591-598 | DOI:10.1090/proc/16575 | Zbl:1544.11032
- On the symplectic type of isomorphisms of the
-torsion of elliptic curves, Memoirs of the American Mathematical Society, 1361, Providence, RI: American Mathematical Society (AMS), 2022 | DOI:10.1090/memo/1361 | Zbl:1519.11002 - Mediterranean Journal of Mathematics, 18 (2021) no. 2, p. 24 (Id/No 48) | DOI:10.1007/s00009-020-01678-1 | Zbl:1478.11040
- The generalized Fermat equation with exponents
, Compositio Mathematica, Volume 156 (2020) no. 1, pp. 77-113 | DOI:10.1112/s0010437x19007693 | Zbl:1450.11024 - An application of the modular method and the symplectic argument to a Lebesgue-Nagell equation, Mathematika, Volume 66 (2020) no. 1, pp. 230-244 | DOI:10.1112/mtk.12018 | Zbl:1473.11077
Cité par 5 documents. Sources : zbMATH
Commentaires - Politique