Let m and n be positive integers. Let denote the binomial coefficient indexed by m and n, where n! is the factorial of n. For any prime p, let denote the largest nonnegative integer r such that divides n. In this paper, we use the p-adic method to show the following identity:
This extends greatly the identities obtained by Mendelsohn et al. in 1971 and by Albree in 1972, respectively.
Soient m et n deux entiers positifs. Soit le coefficient binomial. Pour chaque nombre premier p, soit le plus grand entier r tel que divise n. Dans cet article, nous montrons l'identité suivante :
Accepted:
Published online:
Siao Hong 1
@article{CRMATH_2016__354_8_756_0, author = {Siao Hong}, title = {The greatest common divisor of certain binomial coefficients}, journal = {Comptes Rendus. Math\'ematique}, pages = {756--761}, publisher = {Elsevier}, volume = {354}, number = {8}, year = {2016}, doi = {10.1016/j.crma.2016.06.001}, language = {en}, }
Siao Hong. The greatest common divisor of certain binomial coefficients. Comptes Rendus. Mathématique, Volume 354 (2016) no. 8, pp. 756-761. doi : 10.1016/j.crma.2016.06.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.06.001/
[1] The gcd of certain binomial coefficients, Math. Mag., Volume 45 (1972), pp. 259-261
[2] A Classical Introduction to Modern Number Theory, Grad. Texts Math., vol. 84, Springer-Verlag, New York, 1990
[3] The greatest common divisor of certain sets of binomial coefficients, J. Number Theory, Volume 21 (1985), pp. 101-119
[4] Students, divisors of binomial coefficients, Amer. Math. Mon., Volume 78 (1971), pp. 201-202
[5] Common factors of (), J. Indian Math. Club (Madras), Volume 1 (1909), pp. 39-43
[6] Secant varieties and successive minima, J. Algebraic Geom., Volume 13 (2004), pp. 323-341
Cited by Sources:
Comments - Policy