In this Note, we present a new version of the vector penalty–projection splitting method described in [1] for the fast numerical computation of incompressible flows with variable density and viscosity. We show that the velocity correction can be made completely independent of the mass density ρ. Hence, this step is purely kinematic using the fast Helmholtz–Hodge decompositions proposed in [2]. Then, it is shown that the dynamic step of pressure gradient correction can be fast and locally consistent on edge-based generalized MAC-type unstructured meshes that naturally verify the compatibility condition in the proposed discrete setting. By the way, a new accurate front-tracking Lagrangian-advection technique is also introduced for multiphase flows.
This new method preserves the fully vector formulation of both the prediction and correction steps of the original scheme, the primary unknowns being and ρ by advection, since the pressure Neumann–Poisson problem remains eliminated. The efficiency of the present method is demonstrated through numerical results on sharp test cases.
On présente dans cette Note une nouvelle version de la méthode de splitting par pénalité–projection vectorielle décrite dans [1] pour le calcul des écoulements incompressibles à masse volumique et viscosité variables. Le principal résultat est de rendre la correction vectorielle de vitesse complètement indépendante de la masse volumique ρ. Cette étape devient donc purement cinématique et correspond à une décomposition rapide de Helmholtz–Hodge proposée dans [2]. On montre que l'étape dynamique de correction du gradient de pression peut être rapide et localement consistante sur des maillages généralisés de type MAC non structurés.
Accepted:
Published online:
Philippe Angot 1; Jean-Paul Caltagirone 2; Pierre Fabrie 3
@article{CRMATH_2016__354_11_1124_0, author = {Philippe Angot and Jean-Paul Caltagirone and Pierre Fabrie}, title = {A kinematic vector penalty{\textendash}projection method for incompressible flow with variable density}, journal = {Comptes Rendus. Math\'ematique}, pages = {1124--1131}, publisher = {Elsevier}, volume = {354}, number = {11}, year = {2016}, doi = {10.1016/j.crma.2016.06.007}, language = {en}, }
TY - JOUR AU - Philippe Angot AU - Jean-Paul Caltagirone AU - Pierre Fabrie TI - A kinematic vector penalty–projection method for incompressible flow with variable density JO - Comptes Rendus. Mathématique PY - 2016 SP - 1124 EP - 1131 VL - 354 IS - 11 PB - Elsevier DO - 10.1016/j.crma.2016.06.007 LA - en ID - CRMATH_2016__354_11_1124_0 ER -
%0 Journal Article %A Philippe Angot %A Jean-Paul Caltagirone %A Pierre Fabrie %T A kinematic vector penalty–projection method for incompressible flow with variable density %J Comptes Rendus. Mathématique %D 2016 %P 1124-1131 %V 354 %N 11 %I Elsevier %R 10.1016/j.crma.2016.06.007 %G en %F CRMATH_2016__354_11_1124_0
Philippe Angot; Jean-Paul Caltagirone; Pierre Fabrie. A kinematic vector penalty–projection method for incompressible flow with variable density. Comptes Rendus. Mathématique, Volume 354 (2016) no. 11, pp. 1124-1131. doi : 10.1016/j.crma.2016.06.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.06.007/
[1] A fast vector penalty–projection method for incompressible non-homogeneous or multiphase Navier–Stokes problems, Appl. Math. Lett., Volume 25 (2012) no. 11, pp. 1681-1688
[2] Fast discrete Helmholtz–Hodge decompositions in bounded domains, Appl. Math. Lett., Volume 26 (2013) no. 4, pp. 445-451
[3] Analysis for the fast vector penalty–projection solver of incompressible multiphase Navier–Stokes/Brinkman problems, Numer. Math. (2016) (submitted for publication) | HAL
[4] P. Angot, J.-P. Caltagirone, P. Fabrie, A spectacular solver of low-Mach multiphase Navier–Stokes problems under strong stresses, in: Turbulence and Interactions, Proceedings of the TI 2015 Int. Conference, in: Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Springer, in press, . | HAL
[5] Discrete conservation properties of unstructured mesh schemes, Annu. Rev. Fluid Mech., Volume 43 (2011), pp. 299-318
[6] Computational Electromagnetism, Academic Press, San Diego, CA, USA, 1998
[7] Discrete Mechanics, Fluid Mechanics Series, ISTE Ltd and J. Wiley & Sons, London, 2015
[8] Modélisation des effets capillaires en mécanique des milieux discrets, 2016 | HAL
[9] A kinematics scalar projection method (KSP) for incompressible flows with variable density, Open J. Fluid Dyn., Volume 5 (2015), pp. 171-182
[10] Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids, Volume 8 (1965) no. 12, pp. 2182-2189
[11] Quantitative benchmark computations of two-dimensional bubble dynamics, Int. J. Numer. Methods Fluids, Volume 60 (2009), pp. 1259-1288
[12] Eulerian–Lagrangian grid coupling and penalty methods for the simulation of multiphase flows interacting with complex objects, Int. J. Numer. Methods Fluids, Volume 56 (2008) no. 8, pp. 1093-1099
[13] Direct Numerical Simulations of Gas-Liquid Multiphase Flows, Cambridge University Press, Cambridge, UK, 2011
[14] A hybrid level set-volume constraint method for incompressible two-phase flow, J. Comput. Phys., Volume 231 (2012), pp. 6438-6471
Cited by Sources:
Comments - Policy