[La vitesse d'une marche aléatoire excitée est infiniment différentiable]
Nous montrons que la vitesse d'une marche aléatoire excitée sur
We prove that the speed of the excited random walk is infinitely differentiable with respect to the bias parameter in
Accepté le :
Publié le :
Cong-Dan Pham 1
@article{CRMATH_2016__354_11_1119_0, author = {Cong-Dan Pham}, title = {The infinite differentiability of the speed for excited random walks}, journal = {Comptes Rendus. Math\'ematique}, pages = {1119--1123}, publisher = {Elsevier}, volume = {354}, number = {11}, year = {2016}, doi = {10.1016/j.crma.2016.10.012}, language = {en}, }
Cong-Dan Pham. The infinite differentiability of the speed for excited random walks. Comptes Rendus. Mathématique, Volume 354 (2016) no. 11, pp. 1119-1123. doi : 10.1016/j.crma.2016.10.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.10.012/
[1] On the speed of a cookie random walk, Probab. Theory Relat. Fields, Volume 141 (2008) no. 3–4, pp. 625-645
[2] Excited random walk, Electron. Commun. Probab., Volume 8 (2003) no. 9, pp. 86-92
[3] Central limit theorem for the excited random walk in dimension
[4] Cut points and diffusive random walks in random environment, Ann. Inst. Henri Poincaré Probab. Stat., Volume 39 (2003), pp. 527-555
[5] Excited against the tide: a random walk with competing drifts, Ann. Inst. Henri Poincaré Probab. Stat., Volume 48 (2012), pp. 745-773
[6] On range and local time of many-dimensional submartingales, J. Theor. Probab., Volume 27 (2014) no. 2, pp. 601-617
[7] On a general many-dimensional excited random walk, Ann. Probab., Volume 40 (2012) no. 5, pp. 2106-2130
[8] Monotonicity and regularity of the speed for excited random walks in higher dimensions, Electron. J. Probab., Volume 20 (2015), p. 72:1-72:25
[9] Multi-excited random walks on integers, Probab. Theory Relat. Fields, Volume 133 (2005) no. 1, pp. 98-122
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier