[Sur le rang d'un produit de variétés]
Cette note donne un exemple de deux variétés compactes M et N pour lesquelles le rang de
This note gives an example of closed smooth manifolds M and N for which the rank of
Accepté le :
Publié le :
Francisco-Javier Turiel 1 ; Arthur G. Wasserman 2
@article{CRMATH_2016__354_10_1023_0, author = {Francisco-Javier Turiel and Arthur G. Wasserman}, title = {On the rank of a product of manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {1023--1025}, publisher = {Elsevier}, volume = {354}, number = {10}, year = {2016}, doi = {10.1016/j.crma.2016.08.004}, language = {en}, }
Francisco-Javier Turiel; Arthur G. Wasserman. On the rank of a product of manifolds. Comptes Rendus. Mathématique, Volume 354 (2016) no. 10, pp. 1023-1025. doi : 10.1016/j.crma.2016.08.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.08.004/
[1] Manifolds which admit
[2] The topology summer institute, Seattle, USA, 1963 (Russ. Math. Surv.), Volume 20 (1965), pp. 145-167 http://www.mi.ras.ru/~snovikov/16.pdf
[3] Singularities of
[4] A classification of closed oriented 3-manifold of rank two, Ann. of Math. (2), Volume 91 (1970), pp. 449-464
[5] Manifolds
Cité par Sources :
Commentaires - Politique