The Morse–Bott inequalities relate the topology of a closed manifold to the topology of the critical point set of a Morse–Bott function defined on it. The Morse–Bott inequalities are sometimes stated under incorrect orientation assumptions. We show that these assumptions are insufficient with an explicit counterexample and clarify the origin of the mistake.
Les inégalités de Morse–Bott relient la topologie d'une variété compacte sans bord à celle de l'ensemble des points critiques d'une fonction de Morse–Bott définie sur cette variété. Elles sont parfois énoncées sous des hypothèses d'orientation inexactes. Nous montrons que ces hypothèses sont insuffisantes grâce à un contre-exemple explicite et clarifions l'origine de cette erreur.
Accepted:
Published online:
Thomas O. Rot 1
@article{CRMATH_2016__354_10_1026_0, author = {Thomas O. Rot}, title = {The {Morse{\textendash}Bott} inequalities, orientations, and the {Thom} isomorphism in {Morse} homology}, journal = {Comptes Rendus. Math\'ematique}, pages = {1026--1028}, publisher = {Elsevier}, volume = {354}, number = {10}, year = {2016}, doi = {10.1016/j.crma.2016.08.003}, language = {en}, }
Thomas O. Rot. The Morse–Bott inequalities, orientations, and the Thom isomorphism in Morse homology. Comptes Rendus. Mathématique, Volume 354 (2016) no. 10, pp. 1026-1028. doi : 10.1016/j.crma.2016.08.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.08.003/
[1] Floer homology of cotangent bundles and the loop product, Geom. Topol., Volume 14 (2010) no. 3, pp. 1569-1722
[2] Lectures on Morse Homology, Kluwer Texts in the Mathematical Sciences, vol. 29, Kluwer Academic Publishers Group, Dordrecht, The Netherlands, 2004
[3] The Morse–Bott inequalities via a dynamical systems approach, Ergod. Theory Dyn. Syst., Volume 29 (2009) no. 6, pp. 1693-1703
[4] The Witten complex and the degenerate Morse inequalities, J. Differ. Geom., Volume 23 (1986) no. 3, pp. 207-240
[5] Nondegenerate critical manifolds, Ann. of Math. (2), Volume 60 (1954), pp. 248-261
[6] Three approaches to Morse–Bott homology: erratum concerning the orientation assumptions http://www.personal.psu.edu/faculty/d/x/dxh40/papers/ThreeApproachesErratum.pdf
[7] Three approaches to Morse–Bott homology, Afr. Diaspora J. Math., Volume 14 (2013) no. 2, pp. 145-177
[8] The Morse–Bott inequalities via dynamical systems: erratum concerning the orientation assumptions http://www.personal.psu.edu/faculty/d/x/dxh40/papers/MorseBottIneqErratum.pdf
[9] Morse homology and degenerate Morse inequalities, Topol. Methods Nonlinear Anal., Volume 13 (1999) no. 1, pp. 147-161
[10] An Invitation to Morse Theory, Universitext, Springer, New York, 2011
[11] Morse–Conley–Floer homology, VU, Amsterdam, 2014 (PhD thesis)
Cited by Sources:
Comments - Policy