Let C be a smooth projective curve of genus over an algebraically closed field of characteristic zero, and M be the moduli space of stable bundles of rank 2 and with fixed determinant of degree d on the curve C. When and d is even, we prove that, for any point , there is a minimal rational curve passing through , which is not a Hecke curve. This complements a theorem of Xiaotao Sun.
Soient C une courbe projective lisse de genre et M l'espace des modules de faisceaux stables de rang 2 et de déterminant fixe de degré d sur C. Nous prouvons que, lorsque et d est pair, il existe, pour tout point , une courbe rationnelle minimale passant par , qui n'est pas une courbe de Hecke. Cela complète un théorème de Xiaotao Sun.
Accepted:
Published online:
Min Liu 1
@article{CRMATH_2016__354_10_1013_0, author = {Min Liu}, title = {Remarks on minimal rational curves on moduli spaces of stable bundles}, journal = {Comptes Rendus. Math\'ematique}, pages = {1013--1017}, publisher = {Elsevier}, volume = {354}, number = {10}, year = {2016}, doi = {10.1016/j.crma.2016.08.007}, language = {en}, }
Min Liu. Remarks on minimal rational curves on moduli spaces of stable bundles. Comptes Rendus. Mathématique, Volume 354 (2016) no. 10, pp. 1013-1017. doi : 10.1016/j.crma.2016.08.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.08.007/
[1] Groupe de Picard des variétés de modules de fibrés semistables sur les courbes algébriques, Invent. Math., Volume 97 (1989), pp. 53-94
[2] Maximal subbundles of rank two vector bundles on curves, Math. Ann., Volume 266 (1983), pp. 55-72
[3] Small rational curves on the moduli space of stable bundles, Int. J. Math., Volume 23 (2012) no. 8
[4] Remarks on lines and minimal rational curves, Sci. China Ser. A, Math., Volume 52 (2009) no. 4, pp. 617-630
[5] Erratum to: Remarks on lines and minimal rational curves, Sci. China Ser. A, Math., Volume 5 (2014) no. 9, p. 1992
[6] On self intersection number of vector bundles of rank 2 on a Riemann surface, Nagoya Math. J., Volume 37 (1970), pp. 191-196
[7] Moduli of vector bundles on a compact Riemann surface, Ann. of Math. (2), Volume 89 (1969), pp. 14-51
[8] Geometry of Hecke cycles I, C.P. Ramanujam – A Tribute, Tata Institute, Springer Verlag, 1978, pp. 291-345
[9] The moduli spaces of vector bundles over an algebraic curve, Math. Ann., Volume 200 (1973), pp. 69-84
[10] Minimal rational curves on the moduli spaces of stable bundles, Math. Ann., Volume 331 (2005), pp. 925-937
[11] Elliptic curves in moduli spaces of stable bundles, Pure Appl. Math. Q., Volume 7 (2011) no. 4
Cited by Sources:
☆ Supported by the National Natural Science Foundation of China (Grant No. 11401330).
Comments - Policy