[Ergodicité du modèle vent–arbre des Ehrenfest]
We consider aperiodic wind–tree models, and show that, for a generic (in the sense of Baire) configuration, the wind–tree dynamics is ergodic in almost every direction.
Nous considérons une modèle apériodique de vent dans des arbres et nous montrons que, pour une configuration générique (dans le sens de Baire), la dynamique de vent–arbre est ergodique dans presque toutes les directions.
Accepté le :
Publié le :
Alba Málaga Sabogal 1 ; Serge Troubetzkoy 2
@article{CRMATH_2016__354_10_1032_0, author = {Alba M\'alaga Sabogal and Serge Troubetzkoy}, title = {Ergodicity of the {Ehrenfest} wind{\textendash}tree model}, journal = {Comptes Rendus. Math\'ematique}, pages = {1032--1036}, publisher = {Elsevier}, volume = {354}, number = {10}, year = {2016}, doi = {10.1016/j.crma.2016.08.008}, language = {en}, }
Alba Málaga Sabogal; Serge Troubetzkoy. Ergodicity of the Ehrenfest wind–tree model. Comptes Rendus. Mathématique, Volume 354 (2016) no. 10, pp. 1032-1036. doi : 10.1016/j.crma.2016.08.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.08.008/
[1] A. Avila, P. Hubert, Recurrence for the wind–tree model, Ann. Inst. Henri Poincaré, Anal. Non Linéaire.
[2] A problem on topological transformations of the plane. II, Math. Proc. Camb. Philos. Soc., Volume 47 (1951), pp. 38-45
[3] The nonequilibrium Ehrenfest gas: a chaotic model with flat obstacles?, Chaos, Volume 19 (2009)
[4] Divergent trajectories in the periodic wind–tree model, J. Mod. Dyn., Volume 7 (2013), pp. 1-29
[5] Diffusion for the periodic wind–tree model, Ann. Sci. ENS, Volume 47 (2014), pp. 1085-1110
[6] Statistical mechanics: microscopic chaos from Brownian motion?, Nature, Volume 401 (1999), p. 875 | DOI
[7] , Encykl. d. Math. Wissensch. IV2 II, Volume Heft 6, Cornell University Press, Itacha, NY, USA (1912), pp. 10-13 90 p. (in German) (English translation by M.J. Moravicsik)
[8] Non-ergodic
[9] Divergences and the approach to equilibrium in the Lorentz and the wind–tree models, Phys. Rev., Volume 185 (1969), pp. 308-322
[10] Aspects of Ergodic Qualitative and Statistical Theory of Motion, Springer, 2004
[11] Diffusion in a periodic wind–tree model, J. Math. Phys., Volume 21 (1980), pp. 1802-1808
[12] Normal and abnormal diffusion in Ehrenfest's wind–tree model, J. Math. Phys., Volume 10 (1969), pp. 397-414
[13] Dynamics on the infinite staircase, Discrete Contin. Dyn. Syst., Volume 33 (2013), pp. 4341-4347
[14] Ergodicity for infinite periodic translation surfaces, Compos. Math., Volume 149 (2013), pp. 1364-1380
[15] The Ehrenfest wind–tree model: periodic directions, recurrence, diffusion, J. Reine Angew. Math., Volume 656 (2011), pp. 223-244
[16] Topological transitivity of billiards in polygons, Math. Notes, Volume 18 (1975), pp. 760-764
[17] Ergodicity of billiard flows and quadratic differentials, Ann. Math. (2), Volume 124 (1986) no. 2, pp. 293-311
[18] Étude d'une famille de transformations préservant la mesure de
[19] Minimality of the Ehrenfest wind–tree model, J. Mod. Dyn., Volume 10 (2016), pp. 209-228
[20] Rational billiards and flat structures, Handbook of Dynamical Systems, vol. 1A, North-Holland, Amsterdam, 2002, pp. 1015-1089
[21] Ergodic infinite group extensions of geodesic flows on translation surfaces, J. Mod. Dyn., Volume 6 (2012), pp. 477-497
[22] Approximation and Billiards, Dynamical Systems and Diophantine Approximation, Semin. Congr., vol. 19, Soc. Math. France, Paris, 2009, pp. 173-185
[23] Typical recurrence for the Ehrenfest wind–tree model, J. Stat. Phys., Volume 141 (2010), pp. 60-67
[24] Abnormal diffusion in Ehrenfest's wind–tree model, Phys. Lett. A, Volume 39 (1972), pp. 397-398
[25] Monte Carlo calculation of normal and abnormal diffusion in Ehrenfest's wind–tree model, J. Comput. Phys., Volume 7 (1971), pp. 528-546
- Ergodic measures for periodic type
-skew-products over interval exchange transformations, Journal d'Analyse Mathématique, Volume 155 (2025) no. 2, pp. 699-741 | DOI:10.1007/s11854-025-0370-7 | Zbl:8044171 - Unique ergodicity for infinite area translation surfaces, Nonlinearity, Volume 38 (2025) no. 6, p. 18 (Id/No 065014) | DOI:10.1088/1361-6544/add3af | Zbl:8051698
- Ergodic and Spectral Theory of Area-Preserving Flows on Surfaces, Ergodic Theory (2023), p. 333 | DOI:10.1007/978-1-0716-2388-6_775
- Quantitative behavior of non-integrable systems. III, Acta Mathematica Hungarica, Volume 166 (2022) no. 2, pp. 254-372 | DOI:10.1007/s10474-022-01229-y | Zbl:1527.37058
- Ergodic and Spectral Theory of Area-Preserving Flows on Surfaces, Encyclopedia of Complexity and Systems Science (2022), p. 1 | DOI:10.1007/978-3-642-27737-5_775-1
- Ehrenfests' wind-tree model is dynamically richer than the Lorentz gas, Journal of Statistical Physics, Volume 180 (2020) no. 1-6, pp. 440-458 | DOI:10.1007/s10955-019-02460-8 | Zbl:1445.82007
- Ergodic properties of the ideal gas model for infinite billiards, Physica D, Volume 390 (2019), pp. 9-14 | DOI:10.1016/j.physd.2018.10.004 | Zbl:1448.37003
- Infinite ergodic index of the Ehrenfest wind-tree model, Communications in Mathematical Physics, Volume 358 (2018) no. 3, pp. 995-1006 | DOI:10.1007/s00220-017-3058-8 | Zbl:1394.37013
- Residual generic ergodicity of periodic group extensions over translation surfaces, Geometriae Dedicata, Volume 187 (2017), pp. 219-239 | DOI:10.1007/s10711-016-0198-5 | Zbl:1404.37037
Cité par 9 documents. Sources : Crossref, zbMATH
Commentaires - Politique