We prove that the hyperelliptic mapping class group of a nonorientable surface of genus has a faithful linear representation of dimension over .
Nous démontrons que le groupe modulaire hyperelliptique d'une surface non orientable de genre a une représentation fidèle linéaire de dimension sur .
Accepted:
Published online:
Michał Stukow 1
@article{CRMATH_2016__354_10_1029_0, author = {Micha{\l} Stukow}, title = {The hyperelliptic mapping class group of a nonorientable surface of genus \protect\emph{g}\,\ensuremath{\geq}\,4 has a faithful representation into $ \mathrm{GL}({g}^{2}-1,\mathbb{R})$}, journal = {Comptes Rendus. Math\'ematique}, pages = {1029--1031}, publisher = {Elsevier}, volume = {354}, number = {10}, year = {2016}, doi = {10.1016/j.crma.2016.07.015}, language = {en}, }
TY - JOUR AU - Michał Stukow TI - The hyperelliptic mapping class group of a nonorientable surface of genus g ≥ 4 has a faithful representation into $ \mathrm{GL}({g}^{2}-1,\mathbb{R})$ JO - Comptes Rendus. Mathématique PY - 2016 SP - 1029 EP - 1031 VL - 354 IS - 10 PB - Elsevier DO - 10.1016/j.crma.2016.07.015 LA - en ID - CRMATH_2016__354_10_1029_0 ER -
%0 Journal Article %A Michał Stukow %T The hyperelliptic mapping class group of a nonorientable surface of genus g ≥ 4 has a faithful representation into $ \mathrm{GL}({g}^{2}-1,\mathbb{R})$ %J Comptes Rendus. Mathématique %D 2016 %P 1029-1031 %V 354 %N 10 %I Elsevier %R 10.1016/j.crma.2016.07.015 %G en %F CRMATH_2016__354_10_1029_0
Michał Stukow. The hyperelliptic mapping class group of a nonorientable surface of genus g ≥ 4 has a faithful representation into $ \mathrm{GL}({g}^{2}-1,\mathbb{R})$. Comptes Rendus. Mathématique, Volume 354 (2016) no. 10, pp. 1029-1031. doi : 10.1016/j.crma.2016.07.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.07.015/
[1] Braid groups are linear, J. Amer. Math. Soc., Volume 14 (2001) no. 2, pp. 471-486
[2] The mapping class group of a genus two surface is linear, Algebraic Geom. Topol., Volume 1 (2001), pp. 699-708
[3] On the homeotopy group of a non-orientable surface, Math. Proc. Camb. Philos. Soc., Volume 71 (1972), pp. 437-448
[4] The hyperelliptic mapping class group of Klein surfaces, Proc. Edinb. Math. Soc., Volume 44 (2001) no. 2, pp. 351-363
[5] Hyperelliptic Klein surfaces, Quart. J. Math. Oxford, Volume 36 (1985) no. 2, pp. 141-157
[6] On the linearity of certain mapping class groups, Turk. J. Math., Volume 24 (2000) no. 4, pp. 367-371
[7] Braid groups are linear, Ann. Math., Volume 155 (2002) no. 1, pp. 131-156
[8] The complex of curves on non-orientable surfaces, J. Lond. Math. Soc., Volume 25 (1982) no. 2, pp. 171-184
[9] Conjugacy classes of finite subgroups of certain mapping class groups, Turk. J. Math., Volume 28 (2004) no. 2, pp. 101-110
[10] A finite presentation for the hyperelliptic mapping class group of a nonrientable surface, Osaka J. Math., Volume 52 (2015) no. 2, pp. 495-515
Cited by Sources:
Comments - Policy