We consider aperiodic wind–tree models, and show that, for a generic (in the sense of Baire) configuration, the wind–tree dynamics is ergodic in almost every direction.
Nous considérons une modèle apériodique de vent dans des arbres et nous montrons que, pour une configuration générique (dans le sens de Baire), la dynamique de vent–arbre est ergodique dans presque toutes les directions.
Accepted:
Published online:
Alba Málaga Sabogal 1; Serge Troubetzkoy 2
@article{CRMATH_2016__354_10_1032_0, author = {Alba M\'alaga Sabogal and Serge Troubetzkoy}, title = {Ergodicity of the {Ehrenfest} wind{\textendash}tree model}, journal = {Comptes Rendus. Math\'ematique}, pages = {1032--1036}, publisher = {Elsevier}, volume = {354}, number = {10}, year = {2016}, doi = {10.1016/j.crma.2016.08.008}, language = {en}, }
Alba Málaga Sabogal; Serge Troubetzkoy. Ergodicity of the Ehrenfest wind–tree model. Comptes Rendus. Mathématique, Volume 354 (2016) no. 10, pp. 1032-1036. doi : 10.1016/j.crma.2016.08.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.08.008/
[1] A. Avila, P. Hubert, Recurrence for the wind–tree model, Ann. Inst. Henri Poincaré, Anal. Non Linéaire.
[2] A problem on topological transformations of the plane. II, Math. Proc. Camb. Philos. Soc., Volume 47 (1951), pp. 38-45
[3] The nonequilibrium Ehrenfest gas: a chaotic model with flat obstacles?, Chaos, Volume 19 (2009)
[4] Divergent trajectories in the periodic wind–tree model, J. Mod. Dyn., Volume 7 (2013), pp. 1-29
[5] Diffusion for the periodic wind–tree model, Ann. Sci. ENS, Volume 47 (2014), pp. 1085-1110
[6] Statistical mechanics: microscopic chaos from Brownian motion?, Nature, Volume 401 (1999), p. 875 | DOI
[7] , Encykl. d. Math. Wissensch. IV2 II, Volume Heft 6, Cornell University Press, Itacha, NY, USA (1912), pp. 10-13 90 p. (in German) (English translation by M.J. Moravicsik)
[8] Non-ergodic -periodic billiards and infinite translation surfaces, Invent. Math., Volume 197 (2014), pp. 241-298
[9] Divergences and the approach to equilibrium in the Lorentz and the wind–tree models, Phys. Rev., Volume 185 (1969), pp. 308-322
[10] Aspects of Ergodic Qualitative and Statistical Theory of Motion, Springer, 2004
[11] Diffusion in a periodic wind–tree model, J. Math. Phys., Volume 21 (1980), pp. 1802-1808
[12] Normal and abnormal diffusion in Ehrenfest's wind–tree model, J. Math. Phys., Volume 10 (1969), pp. 397-414
[13] Dynamics on the infinite staircase, Discrete Contin. Dyn. Syst., Volume 33 (2013), pp. 4341-4347
[14] Ergodicity for infinite periodic translation surfaces, Compos. Math., Volume 149 (2013), pp. 1364-1380
[15] The Ehrenfest wind–tree model: periodic directions, recurrence, diffusion, J. Reine Angew. Math., Volume 656 (2011), pp. 223-244
[16] Topological transitivity of billiards in polygons, Math. Notes, Volume 18 (1975), pp. 760-764
[17] Ergodicity of billiard flows and quadratic differentials, Ann. Math. (2), Volume 124 (1986) no. 2, pp. 293-311
[18] Étude d'une famille de transformations préservant la mesure de , Université Paris-11, Paris, 2014 (PhD thesis)
[19] Minimality of the Ehrenfest wind–tree model, J. Mod. Dyn., Volume 10 (2016), pp. 209-228
[20] Rational billiards and flat structures, Handbook of Dynamical Systems, vol. 1A, North-Holland, Amsterdam, 2002, pp. 1015-1089
[21] Ergodic infinite group extensions of geodesic flows on translation surfaces, J. Mod. Dyn., Volume 6 (2012), pp. 477-497
[22] Approximation and Billiards, Dynamical Systems and Diophantine Approximation, Semin. Congr., vol. 19, Soc. Math. France, Paris, 2009, pp. 173-185
[23] Typical recurrence for the Ehrenfest wind–tree model, J. Stat. Phys., Volume 141 (2010), pp. 60-67
[24] Abnormal diffusion in Ehrenfest's wind–tree model, Phys. Lett. A, Volume 39 (1972), pp. 397-398
[25] Monte Carlo calculation of normal and abnormal diffusion in Ehrenfest's wind–tree model, J. Comput. Phys., Volume 7 (1971), pp. 528-546
Cited by Sources:
Comments - Policy