This paper deals with higher-order topological sensitivity analysis for the Laplace operator with respect to the presence of a Dirichlet geometry perturbation. Two main results are presented in this work. In the first one, we discuss the influence of the considered geometry perturbation on the Laplace solution. The second one is devoted to the higher-order topological derivatives. We derive a higher-order topological sensitivity analysis for a large class of shape functions.
Dans ce papier, on donne une analyse de sensibilité pour l'opérateur de Laplace par rapport à des perturbations géométriques de type Dirichlet. On pésente deux résultats. Le premier concerne l'influence de la perturbation géométrique sur la solution du problème de Laplace. On dérive une formule de représentation asymptotique d'ordre supérieur décrivant le comportement de la solution perturbée en fonction de la taille de la perturbation. Le deuxième concerne les dérivées d'une fonction de forme par rapport à la modification de la topologie du domaine. On donne un développement asymtotique topologique d'ordre supérieur valable pour une grande classe de fonctions de forme.
Accepted:
Published online:
Maatoug Hassine 1; Khalifa Khelifi 1
@article{CRMATH_2016__354_10_993_0, author = {Maatoug Hassine and Khalifa Khelifi}, title = {Higher-order topological sensitivity analysis for the {Laplace} operator}, journal = {Comptes Rendus. Math\'ematique}, pages = {993--999}, publisher = {Elsevier}, volume = {354}, number = {10}, year = {2016}, doi = {10.1016/j.crma.2016.09.002}, language = {en}, }
Maatoug Hassine; Khalifa Khelifi. Higher-order topological sensitivity analysis for the Laplace operator. Comptes Rendus. Mathématique, Volume 354 (2016) no. 10, pp. 993-999. doi : 10.1016/j.crma.2016.09.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.09.002/
[1] Topological optimization method for a geometric control problem in Stokes flow, Appl. Numer. Math., Volume 59 (2009) no. 8, pp. 1823-1838
[2] Optimal shape design for fluid flow using topological perturbation technique, J. Math. Anal. Appl., Volume 356 (2009), pp. 548-563
[3] High-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of conductivity inhomogeneities of small diameter, SIAM J. Math. Anal., Volume 34 (2003) no. 5, pp. 1152-1166
[4] Topological sensitivity analysis for the location of small cavities in Stokes flow, SIAM J. Control Optim., Volume 48 (2009) no. 5, pp. 2871-2900
[5] Topological sensitivity for 3D elastodynamic and acoustic inverse scattering in the time domain, Comput. Methods Appl. Mech. Eng., Volume 195 (2006), pp. 5239-5254
[6] Inverse acoustic scattering by small-obstacle expansion of a misfit function, Inverse Probl., Volume 24 (2008) no. 3
[7] Analyse mathémathique et calcul numérique pour les sciences et les techniques, Collection CEA, Masson, Paris, 1987
[8] The topological asymptotic for PDE systems: the elastics case, SIAM J. Control Optim., Volume 39 (2001) no. 6, pp. 1756-1778
[9] The topological asymptotic expansion for the Dirichlet problem, SIAM J. Control Optim., Volume 41 (2002), pp. 1052-1072
[10] Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics, Inverse Probl., Volume 22 (2006), pp. 1761-1785
[11] From differential calculus to topological optimization, SIAM J. Control Optim., Volume 45 (2007) no. 6, pp. 1965-1987
[12] The topological asymptotic expansion for the quasi-Stokes problem, ESAIM Control Optim. Calc. Var., Volume 10 (2004) no. 4, pp. 478-504
[13] First- and second-order topological sensitivity analysis for inclusions, Inverse Probl. Sci. Eng., Volume 17 (2009) no. 5, pp. 665-679
[14] Second order topological sensitivity analysis, Int. J. Solids Struct., Volume 44 (2007) no. 14, pp. 4958-4977
[15] The topological asymptotic for the Helmholtz equation, SIAM J. Control Optim., Volume 42 (2003) no. 5, pp. 1523-1544
Cited by Sources:
Comments - Policy