[Points périodiques à l'intersection entre les frontières de bassins immédiats attractifs]
Nous donnons des conditions suffisantes pour que l'intersection entre les frontières de deux bassins immédiats attractifs d'une fraction rationnelle contienne au moins un point périodique.
We give conditions under which the intersection between two attracting immediate basins boundaries of a rational map contains at least one periodic point.
Accepté le :
Publié le :
Bastien Rossetti 1
@article{CRMATH_2017__355_2_222_0, author = {Bastien Rossetti}, title = {Periodic points in the intersection of attracting immediate basins boundaries}, journal = {Comptes Rendus. Math\'ematique}, pages = {222--225}, publisher = {Elsevier}, volume = {355}, number = {2}, year = {2017}, doi = {10.1016/j.crma.2016.09.004}, language = {en}, }
Bastien Rossetti. Periodic points in the intersection of attracting immediate basins boundaries. Comptes Rendus. Mathématique, Volume 355 (2017) no. 2, pp. 222-225. doi : 10.1016/j.crma.2016.09.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.09.004/
[1] Complex Dynamics, Springer, 1995
[2] On a theorem of Fatou, Bol. Soc. Bras. Mat., Volume 24 (1993), pp. 1-11
[3] Local connectivity of some Julia sets containing a circle with an irrational rotation, Acta Math., Volume 177 (1996), pp. 163-224
[4] Cylinders for iterated rational maps, University of California at Berkeley, CA, USA, 1994 (PhD thesis)
[5] Conformal Fractals: Ergodic Theory Methods, The London Mathematical Society Lecture Note Series, vol. 371, 2010
Cité par Sources :
Commentaires - Politique