We establish several estimates of the distance between two surfaces immersed in the three-dimensional Euclidean space in terms of the distance between their fundamental forms, measured in various Sobolev norms. These estimates, which can be seen as nonlinear versions of linear Korn inequalities on a surface appearing in the theory of linearly elastic shells, generalize in particular the nonlinear Korn inequality established in 2005 by P. G. Ciarlet, L. Gratie, and C. Mardare.
Nous établissons plusieurs majorations de la distance entre deux surfaces immergées dans l'espace euclidien tridimensionnel en fonction de la distance entre leurs formes fondamentales, mesurée à l'aide de diverses normes de Sobolev. Ces estimations, qui peuvent être vues comme des versions non linéaires des inégalités de Korn linéaires sur une surface apparaissant dans la théorie de coques linéairement élastiques, généralisent en particulier l'inégalité de Korn non linéaire sur une surface établie en 2005 par P. G. Ciarlet, L. Gratie et C. Mardare.
Accepted:
Published online:
Philippe G. Ciarlet 1; Maria Malin 1; Cristinel Mardare 2
@article{CRMATH_2017__355_2_226_0, author = {Philippe G. Ciarlet and Maria Malin and Cristinel Mardare}, title = {New nonlinear estimates for surfaces in terms of their fundamental forms}, journal = {Comptes Rendus. Math\'ematique}, pages = {226--231}, publisher = {Elsevier}, volume = {355}, number = {2}, year = {2017}, doi = {10.1016/j.crma.2017.01.002}, language = {en}, }
TY - JOUR AU - Philippe G. Ciarlet AU - Maria Malin AU - Cristinel Mardare TI - New nonlinear estimates for surfaces in terms of their fundamental forms JO - Comptes Rendus. Mathématique PY - 2017 SP - 226 EP - 231 VL - 355 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2017.01.002 LA - en ID - CRMATH_2017__355_2_226_0 ER -
Philippe G. Ciarlet; Maria Malin; Cristinel Mardare. New nonlinear estimates for surfaces in terms of their fundamental forms. Comptes Rendus. Mathématique, Volume 355 (2017) no. 2, pp. 226-231. doi : 10.1016/j.crma.2017.01.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.01.002/
[1] Sobolev Spaces, Academic Press, New York, 1975
[2] Sur l'ellipticité du modèle linéaire de coques de W.T. Koiter (R. Glowinski; J.-L. Lions, eds.), Computing Methods in Applied Sciences and Engineering, Lect. Notes Econ. Math. Syst., vol. 134, Springer-Verlag, Heidelberg, 1976, pp. 89-136
[3] Existence theorems for two-dimensional linear shell theories, J. Elasticity, Volume 34 (1994), pp. 111-138
[4] Existence and uniqueness for the linear Koiter model for shells with little regularity, Q. Appl. Math., Volume 57 (1999), pp. 317-337
[5] An Introduction to Differential Geometry with Applications to Elasticity, Springer, Dordrecht, The Netherlands, 2005
[6] A nonlinear Korn inequality on a surface, J. Math. Pures Appl., Volume 85 (2006), pp. 2-16
[7] On rigid and infinitesimal rigid displacements in shell theory, J. Math. Pures Appl., Volume 83 (2004), pp. 1-15
[8] Nonlinear Korn inequalities, J. Math. Pures Appl., Volume 104 (2015), pp. 1119-1134
[9] P.G. Ciarlet, M. Malin, C. Mardare, New estimates of the distance between two surfaces in terms of the distance between their fundamental forms, in preparation.
[10] A Course in Differential Geometry, Springer, Berlin, 1978
[11] On the nonlinear theory of thin elastic shells, Proc. K. Ned. Akad. Wet., Volume B69 (1966), pp. 1-54
[12] Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967
Cited by Sources:
Comments - Policy