Since the seminal contribution of Geymonat, Müller, and Triantafyllidis, it is known that strong ellipticity is not necessarily conserved by homogenization in linear elasticity. This phenomenon is typically related to microscopic buckling of the composite material. The present contribution concerns the interplay between isotropy and strong ellipticity in the framework of periodic homogenization in linear elasticity. Mixtures of two isotropic phases may indeed lead to loss of strong ellipticity when arranged in a laminate manner. We show that if a matrix/inclusion type mixture of isotropic phases produces macroscopic isotropy, then strong ellipticity cannot be lost.
Nous savons, depuis l'article fondateur de Geymonat, Müller et Triantafyllidis, qu'en élasticité linéaire l'homogénéisation périodique ne conserve pas nécessairement l'ellipticité forte. Ce phénomène est lié au flambage microscopique des composites. Notre contribution consiste à examiner le rôle de l'isotropie dans ce type de pathologie. Le mélange de deux phases isotropes peut en effet conduire à cette perte si l'arrangement est celui d'un laminé. Nous montrons en revanche que, si un arrangement de type matrice/inclusion produit un tenseur homogénéisé isotrope, alors la forte ellipticité est conservée.
Accepted:
Published online:
Gilles A. Francfort 1; Antoine Gloria 2, 3
@article{CRMATH_2016__354_11_1139_0, author = {Gilles A. Francfort and Antoine Gloria}, title = {Isotropy prohibits the loss of strong ellipticity through homogenization in linear elasticity}, journal = {Comptes Rendus. Math\'ematique}, pages = {1139--1144}, publisher = {Elsevier}, volume = {354}, number = {11}, year = {2016}, doi = {10.1016/j.crma.2016.09.014}, language = {en}, }
TY - JOUR AU - Gilles A. Francfort AU - Antoine Gloria TI - Isotropy prohibits the loss of strong ellipticity through homogenization in linear elasticity JO - Comptes Rendus. Mathématique PY - 2016 SP - 1139 EP - 1144 VL - 354 IS - 11 PB - Elsevier DO - 10.1016/j.crma.2016.09.014 LA - en ID - CRMATH_2016__354_11_1139_0 ER -
%0 Journal Article %A Gilles A. Francfort %A Antoine Gloria %T Isotropy prohibits the loss of strong ellipticity through homogenization in linear elasticity %J Comptes Rendus. Mathématique %D 2016 %P 1139-1144 %V 354 %N 11 %I Elsevier %R 10.1016/j.crma.2016.09.014 %G en %F CRMATH_2016__354_11_1139_0
Gilles A. Francfort; Antoine Gloria. Isotropy prohibits the loss of strong ellipticity through homogenization in linear elasticity. Comptes Rendus. Mathématique, Volume 354 (2016) no. 11, pp. 1139-1144. doi : 10.1016/j.crma.2016.09.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.09.014/
[1] Loss of ellipticity through homogenization in linear elasticity, Math. Models Methods Appl. Sci., Volume 25 (2015) no. 5, pp. 905-928
[2] Homogenization of nonlinearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity, Arch. Ration. Mech. Anal., Volume 122 (1993), pp. 231-290
[3] Laminations in linearized elasticity: the isotropic non-very strongly elliptic case, J. Elasticity, Volume 53 (1998/1999) no. 3, pp. 215-256
[4] Homogenization of nonconvex integral functionals and cellular elastic materials, Arch. Ration. Mech. Anal., Volume 99 (1987) no. 3, pp. 189-212
[5] Sur les normes équivalentes dans et sur la coercivité des formes formellement positives, Équations aux derivées partielles, Séminaire de mathématiques supérieures, vol. 19, 1966, pp. 101-108
Cited by Sources:
Comments - Policy