[L'isotropie interdit la perte d'ellipticité forte par homogénéisation en élasticité linéaire]
Since the seminal contribution of Geymonat, Müller, and Triantafyllidis, it is known that strong ellipticity is not necessarily conserved by homogenization in linear elasticity. This phenomenon is typically related to microscopic buckling of the composite material. The present contribution concerns the interplay between isotropy and strong ellipticity in the framework of periodic homogenization in linear elasticity. Mixtures of two isotropic phases may indeed lead to loss of strong ellipticity when arranged in a laminate manner. We show that if a matrix/inclusion type mixture of isotropic phases produces macroscopic isotropy, then strong ellipticity cannot be lost.
Nous savons, depuis l'article fondateur de Geymonat, Müller et Triantafyllidis, qu'en élasticité linéaire l'homogénéisation périodique ne conserve pas nécessairement l'ellipticité forte. Ce phénomène est lié au flambage microscopique des composites. Notre contribution consiste à examiner le rôle de l'isotropie dans ce type de pathologie. Le mélange de deux phases isotropes peut en effet conduire à cette perte si l'arrangement est celui d'un laminé. Nous montrons en revanche que, si un arrangement de type matrice/inclusion produit un tenseur homogénéisé isotrope, alors la forte ellipticité est conservée.
Accepté le :
Publié le :
Gilles A. Francfort 1 ; Antoine Gloria 2, 3
@article{CRMATH_2016__354_11_1139_0, author = {Gilles A. Francfort and Antoine Gloria}, title = {Isotropy prohibits the loss of strong ellipticity through homogenization in linear elasticity}, journal = {Comptes Rendus. Math\'ematique}, pages = {1139--1144}, publisher = {Elsevier}, volume = {354}, number = {11}, year = {2016}, doi = {10.1016/j.crma.2016.09.014}, language = {en}, }
TY - JOUR AU - Gilles A. Francfort AU - Antoine Gloria TI - Isotropy prohibits the loss of strong ellipticity through homogenization in linear elasticity JO - Comptes Rendus. Mathématique PY - 2016 SP - 1139 EP - 1144 VL - 354 IS - 11 PB - Elsevier DO - 10.1016/j.crma.2016.09.014 LA - en ID - CRMATH_2016__354_11_1139_0 ER -
%0 Journal Article %A Gilles A. Francfort %A Antoine Gloria %T Isotropy prohibits the loss of strong ellipticity through homogenization in linear elasticity %J Comptes Rendus. Mathématique %D 2016 %P 1139-1144 %V 354 %N 11 %I Elsevier %R 10.1016/j.crma.2016.09.014 %G en %F CRMATH_2016__354_11_1139_0
Gilles A. Francfort; Antoine Gloria. Isotropy prohibits the loss of strong ellipticity through homogenization in linear elasticity. Comptes Rendus. Mathématique, Volume 354 (2016) no. 11, pp. 1139-1144. doi : 10.1016/j.crma.2016.09.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.09.014/
[1] Loss of ellipticity through homogenization in linear elasticity, Math. Models Methods Appl. Sci., Volume 25 (2015) no. 5, pp. 905-928
[2] Homogenization of nonlinearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity, Arch. Ration. Mech. Anal., Volume 122 (1993), pp. 231-290
[3] Laminations in linearized elasticity: the isotropic non-very strongly elliptic case, J. Elasticity, Volume 53 (1998/1999) no. 3, pp. 215-256
[4] Homogenization of nonconvex integral functionals and cellular elastic materials, Arch. Ration. Mech. Anal., Volume 99 (1987) no. 3, pp. 189-212
[5] Sur les normes équivalentes dans
- Quantitative Nonlinear Homogenization: Control of Oscillations, Archive for Rational Mechanics and Analysis, Volume 247 (2023) no. 4 | DOI:10.1007/s00205-023-01895-4
- Optimal Homogenization Rates in Stochastic Homogenization of Nonlinear Uniformly Elliptic Equations and Systems, Archive for Rational Mechanics and Analysis, Volume 242 (2021) no. 1, p. 343 | DOI:10.1007/s00205-021-01686-9
- Loss of Strong Ellipticity Through Homogenization in 2D Linear Elasticity: A Phase Diagram, Archive for Rational Mechanics and Analysis, Volume 231 (2019) no. 2, p. 845 | DOI:10.1007/s00205-018-1290-9
- A Two-Dimensional Labile Aether Through Homogenization, Communications in Mathematical Physics, Volume 367 (2019) no. 2, p. 599 | DOI:10.1007/s00220-019-03333-7
- Quantitative Homogenization in Nonlinear Elasticity for Small Loads, Archive for Rational Mechanics and Analysis, Volume 230 (2018) no. 1, p. 343 | DOI:10.1007/s00205-018-1247-z
- Homogenization of weakly coercive integral functionals in three-dimensional linear elasticity, Journal de l’École polytechnique — Mathématiques, Volume 4 (2017), p. 483 | DOI:10.5802/jep.49
Cité par 6 documents. Sources : Crossref
Commentaires - Politique