This paper presents an existence theory for solitary waves at the interface between a thin ice sheet (modelled using the Cosserat theory of hyperelastic shells) and an ideal fluid (of finite depth and in irrotational motion) for sufficiently large values of a dimensionless parameter γ. We establish the existence of a minimiser of the wave energy subject to the constraint , where is the horizontal impulse and , and show that the solitary waves detected by our variational method converge (after an appropriate rescaling) to solutions to the nonlinear Schrödinger equation with cubic focussing nonlinearity as .
Cette note présente une théorie d'existence d'ondes solitaires à l'interface entre une couche de glace mince (modélisée par la théorie des coques hyperélastiques de Cosserat) et un fluide parfait (de profondeur finie et irrotationnel), pour des valeurs suffisamment grandes d'un paramètre sans dimension γ. Nous montrons l'existence d'un minimiseur de l'énergie de l'onde sous la contrainte , où représente l'impulsion horizontale et . Nous démontrons que les ondes solitaires trouvées par notre méthode variationnelle convergent (après un changement d'échelle approprié) vers des solutions de l'équation de Schrödinger cubique focalisante, lorsque .
Accepted:
Published online:
Mark D. Groves 1, 2; Benedikt Hewer 1; Erik Wahlén 3
@article{CRMATH_2016__354_11_1078_0, author = {Mark D. Groves and Benedikt Hewer and Erik Wahl\'en}, title = {Variational existence theory for hydroelastic solitary waves}, journal = {Comptes Rendus. Math\'ematique}, pages = {1078--1086}, publisher = {Elsevier}, volume = {354}, number = {11}, year = {2016}, doi = {10.1016/j.crma.2016.10.004}, language = {en}, }
TY - JOUR AU - Mark D. Groves AU - Benedikt Hewer AU - Erik Wahlén TI - Variational existence theory for hydroelastic solitary waves JO - Comptes Rendus. Mathématique PY - 2016 SP - 1078 EP - 1086 VL - 354 IS - 11 PB - Elsevier DO - 10.1016/j.crma.2016.10.004 LA - en ID - CRMATH_2016__354_11_1078_0 ER -
Mark D. Groves; Benedikt Hewer; Erik Wahlén. Variational existence theory for hydroelastic solitary waves. Comptes Rendus. Mathématique, Volume 354 (2016) no. 11, pp. 1078-1086. doi : 10.1016/j.crma.2016.10.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.10.004/
[1] D.M. Ambrose, M. Siegel, Well-posedness of two-dimensional hydroelastic waves, preprint, 2014.
[2] Nonlinear gravity and capillary–gravity waves, Annu. Rev. Fluid Mech., Volume 31 (1999), pp. 301-346
[3] Existence and conditional energetic stability of solitary gravity–capillary water waves with constant vorticity, Proc. R. Soc. Edinb., Sect. A, Volume 145 (2015), pp. 791-883
[4] Computations of fully nonlinear hydroelastic solitary waves on deep water, J. Fluid Mech., Volume 713 (2012), pp. 307-329
[5] Lectures on Nonlinear Hyperbolic Differential Equations, Springer-Verlag, Heidelberg, Germany, 1997
[6] Three dimensional flexural-gravity waves, Stud. Appl. Math., Volume 131 (2013), pp. 135-148
[7] Modelling nonlinear hydroelastic waves, Philos. Trans. R. Soc. Lond. Ser. A, Volume 369 (2011), pp. 2942-2956
Cited by Sources:
Comments - Policy