[Transformations d'Aluthge torales et sphériques de shifts pondérés à deux variables]
Nous introduisons deux notions naturelles des transformations d'Aluthge (torales et sphériques) pour les shifts pondérés à deux variables et nous étudions leurs propriétés. Ensuite, nous étudions la classe de shifts pondérés à deux variables sphériques et quasi-normaux, qui sont les points fixes pour la transformation d'Aluthge sphérique. Enfin, nous discutons brièvement la relation entre les shifts pondérés à deux variables qui sont sphériquement quasinormaux et ceux qui sont sphériquement isométriques.
We introduce two natural notions of Aluthge transforms (toral and spherical) for 2-variable weighted shifts and study their basic properties. Next, we study the class of spherically quasinormal 2-variable weighted shifts, which are the fixed points for the spherical Aluthge transform. Finally, we briefly discuss the relation between spherically quasinormal and spherically isometric 2-variable weighted shifts.
Accepté le :
Publié le :
Raúl E. Curto 1 ; Jasang Yoon 2
@article{CRMATH_2016__354_12_1200_0, author = {Ra\'ul E. Curto and Jasang Yoon}, title = {Toral and spherical {Aluthge} transforms of 2-variable weighted shifts}, journal = {Comptes Rendus. Math\'ematique}, pages = {1200--1204}, publisher = {Elsevier}, volume = {354}, number = {12}, year = {2016}, doi = {10.1016/j.crma.2016.10.005}, language = {en}, }
Raúl E. Curto; Jasang Yoon. Toral and spherical Aluthge transforms of 2-variable weighted shifts. Comptes Rendus. Mathématique, Volume 354 (2016) no. 12, pp. 1200-1204. doi : 10.1016/j.crma.2016.10.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.10.005/
[1] On p-hyponormal operators for , Integral Equ. Oper. Theory, Volume 13 (1990), pp. 307-315
[2] On the intertwining of joint isometries, J. Oper. Theory, Volume 23 (1990), pp. 339-350
[3] On the reflexivity of certain operator tuples, Acta Math. Sci. (Szeged), Volume 81 (2015), pp. 285-291
[4] Commutant lifting for jointly isometric operators—a geometrical approach, J. Funct. Anal., Volume 140 (1996), pp. 300-311
[5] Rigidity theorems for spherical hyperexpansions, Complex Anal. Oper. Theory, Volume 7 (2013), pp. 1545-1568
[6] Recursively generated weighted shifts and the subnormal completion problem, Integral Equ. Oper. Theory, Volume 17 (1993), pp. 202-246
[7] k-hyponormality of multivariable weighted shifts, J. Funct. Anal., Volume 229 (2005), pp. 462-480
[8] Subnormality of 2-variable weighted shifts with diagonal core, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013), pp. 203-207
[9] Jointly hyponormal pairs of subnormal operators need not be jointly subnormal, Trans. Amer. Math. Soc., Volume 358 (2006), pp. 5139-5159
[10] Brown measure and iterates of the Aluthge transform for some operators arising from measurable actions, Trans. Amer. Math. Soc., Volume 361 (2009), pp. 6583-6593
[11] Some remarks on spherical isometries, Oper. Theory, Adv. Appl., Volume 129 (2001), pp. 271-291
[12] Aluthge transforms and n-contractivity of weighted shifts, J. Oper. Theory, Volume 61 (2009), pp. 419-438
[13] Quasinormality of Toeplitz tuples with analytic symbols, Houst. J. Math., Volume 32 (2006), pp. 293-298
[14] J. Gleason, Quasinormality and commuting tuples, preprint, 2004.
[15] Aluthge transform of operators, Integral Equ. Oper. Theory, Volume 37 (2000), pp. 437-448
[16] Schur product techniques for the subnormality of commuting 2-variable weighted shifts, Linear Algebra Appl., Volume 453 (2014), pp. 174-191
[17] Subnormality of Aluthge transform of weighted shifts, Integral Equ. Oper. Theory, Volume 72 (2012), pp. 241-251
[18] Research Wolfram, Inc., Mathematica, Version 9.0, Champaign, IL, 2013.
Cité par Sources :
☆ The first author of this paper was partially supported by NSF Grant DMS-1302666.
Commentaires - Politique