A functional B on the space of bounded real sequences is said to be a Banach limit if , and for every , where T is a translation operator. The set of all Banach limits is a closed convex set on the unit sphere of . Let C be Cesàro operator , Denote .
The cardinality of the set of extreme points is , where c is the cardinality of continuum. A subspace generated by any countable collection from is isometric to . For given , , we denote
Une forme linéaire B sur l'espace des suites bornées est appelée une limite de Banach si , et pour tout , T désignant l'opérateur de translation. L'ensemble des limites de Banach est un sous-ensemble convexe fermé de la shère unité de . Soit C l'opérateur de Cesàro, , Posons .
La cardinalité de l'ensemble des points extrémaux est , où c désigne la cardinalité du continuum. Un sous-espace engendré par une famille dénombrable de est isométrique à . Étant donnés et , notons
Accepted:
Published online:
Egor Alekhno 1; Evgeniy Semenov 2; Fedor Sukochev 3; Alexandr Usachev 3
@article{CRMATH_2016__354_12_1195_0, author = {Egor Alekhno and Evgeniy Semenov and Fedor Sukochev and Alexandr Usachev}, title = {On the structure of invariant {Banach} limits}, journal = {Comptes Rendus. Math\'ematique}, pages = {1195--1199}, publisher = {Elsevier}, volume = {354}, number = {12}, year = {2016}, doi = {10.1016/j.crma.2016.10.007}, language = {en}, }
TY - JOUR AU - Egor Alekhno AU - Evgeniy Semenov AU - Fedor Sukochev AU - Alexandr Usachev TI - On the structure of invariant Banach limits JO - Comptes Rendus. Mathématique PY - 2016 SP - 1195 EP - 1199 VL - 354 IS - 12 PB - Elsevier DO - 10.1016/j.crma.2016.10.007 LA - en ID - CRMATH_2016__354_12_1195_0 ER -
Egor Alekhno; Evgeniy Semenov; Fedor Sukochev; Alexandr Usachev. On the structure of invariant Banach limits. Comptes Rendus. Mathématique, Volume 354 (2016) no. 12, pp. 1195-1199. doi : 10.1016/j.crma.2016.10.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.10.007/
[1] Order and geometric properties of the set of Banach limits, Algebra Anal., Volume 28 (2016) no. 3, pp. 3-35
[2] Infinite Dimensional Analysis. A Hitchhiker's Guide, Springer, Berlin, 2006
[3] Théorie des Opérations Linéaires, Éditions Jacques Gabay, Sceaux, France, 1993 (reprint of the 1932 original)
[4] Spectral flow and Dixmier traces, Adv. Math., Volume 173 (2003) no. 1, pp. 68-113
[5] On the size of the set of left invariant means on a semi-group, Proc. Amer. Math. Soc., Volume 23 (1969), pp. 199-205
[6] Singular symmetric functionals and Banach limits with additional invariance properties, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 67 (2003) no. 6, pp. 111-136
[7] Banach–Hausdorff limits, Proc. Amer. Math. Soc., Volume 1 (1950), pp. 662-665
[8] A contribution to the theory of divergent sequences, Acta Math., Volume 80 (1948), pp. 167-190
[9] Banach Lattices, Universitext, Springer-Verlag, Berlin, 1991
[10] Invariant Banach limits and applications, J. Funct. Anal., Volume 259 (2010) no. 6, pp. 1517-1541
[11] Extreme points of the set of Banach limits, Positivity, Volume 17 (2013) no. 1, pp. 163-170
[12] Geometric properties of the set of Banach limits, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 78 (2014) no. 3, pp. 177-204
[13] Banach limits, Amer. Math. Monthly, Volume 74 (1967), pp. 308-311
Cited by Sources:
Comments - Policy