In this work, we prove a residue formula for the Morita–Futaki–Bott invariant with respect to any holomorphic vector field, with isolated (possibly degenerated) singularities in terms of Grothendieck's residues.
On obtient, en utilisant les résidus de Grothendieck, une formule résiduelle pour l'invariant de Morita–Futaki–Bott par rapport à un champ de vecteurs holomorphes avec singularités isolées, dégénérées ou non.
Accepted:
Published online:
Maurício Corrêa 1; Miguel Rodríguez 2
@article{CRMATH_2016__354_11_1109_0, author = {Maur{\'\i}cio Corr\^ea and Miguel Rodr{\'\i}guez}, title = {Residue formula for {Morita{\textendash}Futaki{\textendash}Bott} invariant on orbifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {1109--1113}, publisher = {Elsevier}, volume = {354}, number = {11}, year = {2016}, doi = {10.1016/j.crma.2016.10.006}, language = {en}, }
Maurício Corrêa; Miguel Rodríguez. Residue formula for Morita–Futaki–Bott invariant on orbifolds. Comptes Rendus. Mathématique, Volume 354 (2016) no. 11, pp. 1109-1113. doi : 10.1016/j.crma.2016.10.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.10.006/
[1] Orbifolds and String Topology, Cambridge University Press, Cambridge, UK, 2007 (ISBN: 0-511-28288-5)
[2] Vector fields and characteristic numbers, Mich. Math. J., Volume 14 (1967), pp. 231-244
[3]
, Springer-Verlag, New York (1978), pp. 435-443 (Selected Papers)[4] Kähler–Einstein metrics and the generalized Futaki invariant, Invent. Math., Volume 110 (1992), pp. 315-335
[5] An obstruction to the existence of Einstein Kähler metrics, Invent. Math., Volume 73 (1983), pp. 437-443
[6] Invariant polynomials on compact complex manifolds, Proc. Jpn. Acad., Ser. A, Math. Sci., Volume 60 (1984) no. 10, pp. 369-372
[7] Invariant polynomials of the automorphism group of a compact complex manifold, J. Differ. Geom., Volume 21 (1985), pp. 135-142
[8] Principles of Algebraic Geometry, Wiley, 1978
[9] The Futaki invariant on the blowup of Kähler surfaces, Int. Math. Res. Not., Volume 2015 (2015) no. 7, pp. 1902-1923 | DOI
[10] Cohomologie quantique orbifolde des espaces projectifs à poids, J. Algebraic Geom., Volume 17 (2008), pp. 137-166
[11] Fonctions de plusieurs variables complexes, Lect. Notes Math., Volume 409 (1974), pp. 1-97
[12] Einstein metrics and Yamabe invariants of weighted projective spaces, Tohoku Math. J. (2), Volume 65 (2013) no. 2, pp. 297-311
Cited by Sources:
☆ This work was partially supported by CNPq, CAPES, FAPEMIG and FAPESP-2015/20841-5.
Comments - Policy