Comptes Rendus
Algebraic geometry/Differential geometry
Residue formula for Morita–Futaki–Bott invariant on orbifolds
Comptes Rendus. Mathématique, Volume 354 (2016) no. 11, pp. 1109-1113.

In this work, we prove a residue formula for the Morita–Futaki–Bott invariant with respect to any holomorphic vector field, with isolated (possibly degenerated) singularities in terms of Grothendieck's residues.

On obtient, en utilisant les résidus de Grothendieck, une formule résiduelle pour l'invariant de Morita–Futaki–Bott par rapport à un champ de vecteurs holomorphes avec singularités isolées, dégénérées ou non.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.10.006

Maurício Corrêa 1; Miguel Rodríguez 2

1 Dep. Matemática ICEx, UFMG, Campus Pampulha, 31270-901 Belo Horizonte, Brazil
2 Dep. Matemática, UFSJ, Praça Frei Orlando, 170, Centro, 36307-352 São João Del Rei, MG, Brazil
@article{CRMATH_2016__354_11_1109_0,
     author = {Maur{\'\i}cio Corr\^ea and Miguel Rodr{\'\i}guez},
     title = {Residue formula for {Morita{\textendash}Futaki{\textendash}Bott} invariant on orbifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1109--1113},
     publisher = {Elsevier},
     volume = {354},
     number = {11},
     year = {2016},
     doi = {10.1016/j.crma.2016.10.006},
     language = {en},
}
TY  - JOUR
AU  - Maurício Corrêa
AU  - Miguel Rodríguez
TI  - Residue formula for Morita–Futaki–Bott invariant on orbifolds
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 1109
EP  - 1113
VL  - 354
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2016.10.006
LA  - en
ID  - CRMATH_2016__354_11_1109_0
ER  - 
%0 Journal Article
%A Maurício Corrêa
%A Miguel Rodríguez
%T Residue formula for Morita–Futaki–Bott invariant on orbifolds
%J Comptes Rendus. Mathématique
%D 2016
%P 1109-1113
%V 354
%N 11
%I Elsevier
%R 10.1016/j.crma.2016.10.006
%G en
%F CRMATH_2016__354_11_1109_0
Maurício Corrêa; Miguel Rodríguez. Residue formula for Morita–Futaki–Bott invariant on orbifolds. Comptes Rendus. Mathématique, Volume 354 (2016) no. 11, pp. 1109-1113. doi : 10.1016/j.crma.2016.10.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.10.006/

[1] A. Adem; J. Leida; Y. Ruan Orbifolds and String Topology, Cambridge University Press, Cambridge, UK, 2007 (ISBN: 0-511-28288-5)

[2] R. Bott Vector fields and characteristic numbers, Mich. Math. J., Volume 14 (1967), pp. 231-244

[3] S.S. Chern, Springer-Verlag, New York (1978), pp. 435-443 (Selected Papers)

[4] W. Ding; G. Tian Kähler–Einstein metrics and the generalized Futaki invariant, Invent. Math., Volume 110 (1992), pp. 315-335

[5] A. Futaki An obstruction to the existence of Einstein Kähler metrics, Invent. Math., Volume 73 (1983), pp. 437-443

[6] A. Futaki; S. Morita Invariant polynomials on compact complex manifolds, Proc. Jpn. Acad., Ser. A, Math. Sci., Volume 60 (1984) no. 10, pp. 369-372

[7] A. Futaki; S. Morita Invariant polynomials of the automorphism group of a compact complex manifold, J. Differ. Geom., Volume 21 (1985), pp. 135-142

[8] P. Griffiths; J. Harris Principles of Algebraic Geometry, Wiley, 1978

[9] H. Li; Y. Shi The Futaki invariant on the blowup of Kähler surfaces, Int. Math. Res. Not., Volume 2015 (2015) no. 7, pp. 1902-1923 | DOI

[10] É. Mann Cohomologie quantique orbifolde des espaces projectifs à poids, J. Algebraic Geom., Volume 17 (2008), pp. 137-166

[11] F. Norguet Fonctions de plusieurs variables complexes, Lect. Notes Math., Volume 409 (1974), pp. 1-97

[12] J.A. Viaclovsky Einstein metrics and Yamabe invariants of weighted projective spaces, Tohoku Math. J. (2), Volume 65 (2013) no. 2, pp. 297-311

Cited by Sources:

This work was partially supported by CNPq, CAPES, FAPEMIG and FAPESP-2015/20841-5.

Comments - Policy