[Une formule résiduelle pour l'invariant de Morita–Futaki–Bott sur une orbifold]
On obtient, en utilisant les résidus de Grothendieck, une formule résiduelle pour l'invariant de Morita–Futaki–Bott par rapport à un champ de vecteurs holomorphes avec singularités isolées, dégénérées ou non.
In this work, we prove a residue formula for the Morita–Futaki–Bott invariant with respect to any holomorphic vector field, with isolated (possibly degenerated) singularities in terms of Grothendieck's residues.
Accepté le :
Publié le :
Maurício Corrêa 1 ; Miguel Rodríguez 2
@article{CRMATH_2016__354_11_1109_0, author = {Maur{\'\i}cio Corr\^ea and Miguel Rodr{\'\i}guez}, title = {Residue formula for {Morita{\textendash}Futaki{\textendash}Bott} invariant on orbifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {1109--1113}, publisher = {Elsevier}, volume = {354}, number = {11}, year = {2016}, doi = {10.1016/j.crma.2016.10.006}, language = {en}, }
Maurício Corrêa; Miguel Rodríguez. Residue formula for Morita–Futaki–Bott invariant on orbifolds. Comptes Rendus. Mathématique, Volume 354 (2016) no. 11, pp. 1109-1113. doi : 10.1016/j.crma.2016.10.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.10.006/
[1] Orbifolds and String Topology, Cambridge University Press, Cambridge, UK, 2007 (ISBN: 0-511-28288-5)
[2] Vector fields and characteristic numbers, Mich. Math. J., Volume 14 (1967), pp. 231-244
[3]
, Springer-Verlag, New York (1978), pp. 435-443 (Selected Papers)[4] Kähler–Einstein metrics and the generalized Futaki invariant, Invent. Math., Volume 110 (1992), pp. 315-335
[5] An obstruction to the existence of Einstein Kähler metrics, Invent. Math., Volume 73 (1983), pp. 437-443
[6] Invariant polynomials on compact complex manifolds, Proc. Jpn. Acad., Ser. A, Math. Sci., Volume 60 (1984) no. 10, pp. 369-372
[7] Invariant polynomials of the automorphism group of a compact complex manifold, J. Differ. Geom., Volume 21 (1985), pp. 135-142
[8] Principles of Algebraic Geometry, Wiley, 1978
[9] The Futaki invariant on the blowup of Kähler surfaces, Int. Math. Res. Not., Volume 2015 (2015) no. 7, pp. 1902-1923 | DOI
[10] Cohomologie quantique orbifolde des espaces projectifs à poids, J. Algebraic Geom., Volume 17 (2008), pp. 137-166
[11] Fonctions de plusieurs variables complexes, Lect. Notes Math., Volume 409 (1974), pp. 1-97
[12] Einstein metrics and Yamabe invariants of weighted projective spaces, Tohoku Math. J. (2), Volume 65 (2013) no. 2, pp. 297-311
Cité par Sources :
☆ This work was partially supported by CNPq, CAPES, FAPEMIG and FAPESP-2015/20841-5.
Commentaires - Politique